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Tool to Debug the Runtime
Behavior of Embedded Systems

Abstract:

As embedded systems have grown more complex, so has the need to understand how
they behave in the real world. Fortunately, available tools have kept up with this demand,
and they continue to improve. However, as these tools have matured, the core issue
has shifted from limited insight to fragmented approaches to gain it. Over time, several
tool families have emerged to address specific analysis problems within particular
market segments under specific constraints. There is no single scenario that defines
embedded development. Accordingly, no single tool can cover all scenarios. Each
segment now relies on familiar toolchains, which strengthens fragmentation.

The best way to select the most appropriate tool from the available options is to start
with the specific context of the situation. Context always matters more than raw power.
Next, find tools that align with the necessary insights and associated trade-offs.
Ultimately, it's not just about tool capability. It's about fit. This guide is designed to help
readers find the right fit.




The Appropriate Tool for Behavioral Insight

Selecting the Right Introspection Tool to Debug the Runtime
Behavior of an Embedded System

All engineering teams working in the field of embedded systems face the same
challenge. At some point, they must reconcile design intent with real-world behavior.
Whether they are bound by automotive compliance, able to move quickly without these
constraints, or need to calibrate a sensor or tune a sophisticated controller, their
approach remains essentially the same. They must observe, validate, and adjust
runtime system behavior.

However, "system behavior" is a broad term, so it's important to consider what it actually
means. As engineers, what are we attempting to observe?

Sometimes, it's about observing a system’s health. Is the system stable and
responsive? Does it remain within acceptable limits? Other times, we're interested in
execution and event flow. Which functions ran, when, and in what order? Sometimes,
it comes down to state changes in variable values. The problem is that no single tool
can provide insight into all these areas without significant trade-offs. Most tools excel
in one area but compromise in others.

This leads us to the topic of this article. We will explore the types of insights and trade-
offs that developers of embedded systems face when selecting tools to interface with
their runtime behavior. Before delving into these categories, however, it is important to
understand the context in which these tools were developed. We will briefly review their
history and the reasons for their significant differences across industries. In summary,
this article aims to answer a single question:

How should one choose the right tool to interface with the runtime behavior of an
embedded system?
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Part 1: Tool Evolution and Segment Realities

1.1 Evolution of Introspection Tools

Before 1990: The Early Days of Inaccessibility

In the early days of embedded systems, the 8- and 16-bit microcontrollers of the 70s
and 80s developers faced extreme constraints: no runtime hooks, no memory to spare,
and no structured visibility. Debugging meant toggling LEDs or sending out serial logs.
Oscilloscopes could validate pin-level timing but gave no insight into what software was
doing. EPROM-based workflows made iteration painfully slow, and in-circuit emulators
(ICEs), though powerful relative to other tools of the time, were expensive and
inaccessible to many.

1990s: Internal Introspection

The shift from EPROMSs to flash memory significantly shortened iteration cycles. In the
mid-1990s, the use of ICEs changed with the adoption of on-chip debugging via
interfaces such as JTAG. These interfaces provided direct access to the processor's
state, eliminating the need for specialized emulation hardware. This lowered costs and
reduced setup complexity. Although integration remained fragmented, debugging
became more accessible, supported by an increasing number of vendor tools and early
integrated development environments (IDEs). This marked the start of insights into the
internal behavior of an embedded system. At the same time, tools for embedded
systems were tailored to segment-specific requirements. Hardware-in-the-loop (HiL)
systems began to be adopted, and the CAN calibration protocol (CCP) was introduced
by ASAM in 1994. For the first time, developers could measure and calibrate ECU
parameters during execution.

2000s: The Emergence of Tracing

From 2000 to 2010, embedded systems evolved from basic task-switching software
into real-time capable platforms. The widespread adoption of real-time operating
systems (RTOS) created new demands for debugging. Engineers needed time-
correlated insight into task switches, interrupts, and variable behavior, something that
traditional breakpoint-based debugging could not provide. In response, tool and silicon
vendors developed new solutions. For example, ARM introduced Serial Wire Debug
(SWD) as an improvement over JTAG and its CoreSight infrastructure with the Cortex-
M3. This enabled engineers to use instruction tracing features, such as the Embedded
Trace Macrocell and the Instrumentation Trace Macrocell, as well as data streaming via
the Serial Wire Viewer (SWV). Meanwhile, other vendors, including Infineon, NXP
(formerly Philips), and Renesas, promoted their own debugging and tracing strategies.
Tool vendors such as Lauterbach, PE Micro, and IAR Systems integrated these
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architectures to provide tracing and live introspection, though capabilities varied
depending on the silicon. For example: SEGGER's J-Link, introduced in the early 2000s,
expanded SWV support by 2008. This enabled trace capabilities on Cortex-M devices
for a broader market.

2010s: From Tooling Constraints to Fragmentation

From 2010 to 2020, the demand for real-time performance increased, and multicore
processors became standard even in mid-tier embedded applications. This pushed
silicon and tool vendors further. ARM’s CoreSight introduced the Trace Memory
Controller (TMC) and the Embedded Trace Router (ETR), which enabled trace
collection and streaming through high-bandwidth interfaces. Tools such as the
SEGGER J-Trace Pro made live ETM streaming possible, enabling developers to collect
instruction-level trace data in real time on the host machine. Outside of ARM, Infineon’s
MCDS + AGBT, Renesas's advanced debug interface, and NXP’s Nexus trace offered
comparable capabilities and increasingly specialized in automotive, industrial, and
safety-oriented applications.

While this symbiosis between silicon and tool vendors developed further, a novel
approach matured during this time: software tracing platforms. These platforms
became a viable alternative for many applications. Tools such as Percepio's Tracealyzer
offer visual timelines, interruption heat maps, CPU load graphs, and state transition
models. With these tools, developers could observe their systems' behavior for race
conditions and measure jitter, preemption patterns, or latency bottlenecks.

After 2010: The Shift to Custom Toolchains

By the end of the 2010s, the landscape of embedded tools had fractured. There was a
tool for every use case, segment, and budget. However, it was rare for one tool to work
across boundaries. The challenge was no longer tool availability. The challenge was
stitching together insights across layers of timing, control flow, and variable state.

Nevertheless, a complete toolchain exists. In regulated environments such as
automotive and aerospace, teams sometimes build complete dynamic testing stacks
by combining hardware-in-the-loop (HiL) platforms, trace tools, and calibration
protocols such as XCP. These setups can deliver near-total observability of timing,
control flow, and variable access. However, this level of visibility comes at a cost:
dedicated infrastructure, custom integration, and maintenance that few teams outside
of these regulated environments can afford. For everyone else, selecting the right tools
for insight is a trade-off. This trend has only accelerated since 2020. Today's embedded
systems are real-time, distributed, field-deployed, and often decoupled from traditional
debugging infrastructure. The old problem was acquiring sufficient tools. The new
problem is choosing the right tool.
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Key Takeaways

e Before 1990: Embedded debugging was constrained by hardware limitations.
Engineers relied on indirect methods like LEDs and oscilloscopes. System
internals were essentially invisible.

e 1990 - 2000: On-chip debugging (via JTAG) and flash memory shortened
iteration times and marked the start of internal system introspection. Tool
support grew, and real-time calibration protocols emerged.

e 2000-2010: The rise of RTOS-driven systems created demand for time-
correlated debugging. Trace infrastructure (e.g., SWD, SWV, ETM) enabled real-
time visibility. Tools integrated these features to varying degrees.

e After 2010: The challenge shifted from tool availability to tool selection and
integration. Highly specialized toolchains enable full observability in regulated
industries, but most teams must balance cost, complexity, and insight.
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1.2 Segments Realities for Introspection Tools

Not all engineering teams face the same constraints, risks, or realities. Having looked
at how embedded debugging has evolved over time, the next step is to understand how
it varies across different market segments. Depending on the industry, debugging and
tuning embedded systems can mean vastly different things. At one end of the spectrum
are the “four horsemen of compliance” in electronics: Automotive, Medical, Aerospace,
and Military. At the other end of the spectrum are consumer and industrial embedded
systems, as well as R&D endeavors.

Tools in Compliance Constrained Segments

In the automotive industry, the ISO 26262 standard influences nearly every decision,
from the use of XCP-based calibration tools such as CANape to the integration of ECUs
into full-scale hardware-in-the-loop environments from companies like dSPACE and
National Instruments (NI). The cost is enormous, but so are the safety requirements.
The result is a rigid, high-assurance pipeline with certified validation platforms.
Automotive debugging is shaped not by what’s technically possible, but by what’s
certifiable and required. In aerospace, this concept is taken even further. It's not just
about whether a debugger can provide insight to tune a controller, but also whether it
can perform consistently under audit. This leaves little room for dynamic, exploratory
debugging. Medical devices face similar constraints, albeit with a different flavor.
Regulatory bodies require compliance and design traceability from requirements to test
results. Debug ports are usually locked down during production or field testing. Logging
is then non-intrusive, scrubbed of patient data, and subject to audit. The barrier to
insight here is legal, not technical. Engineers may want full runtime visibility, but unless
it's validated, encrypted, and documented, it's out of the question. In military
applications, all compliance demands converge, including extreme performance
requirements, strict safety and mission-critical reliability standards, and
uncompromising information security measures. Tooling must support highly
deterministic systems under real-time constraints, often on ruggedized or custom
hardware, while meeting stringent assurance standards such as DO-178 for defense
aviation and MIL-STD guidelines. Debugging and introspection tools must be examined
for telemetry risks and operated within tightly controlled, often classified, environments.
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Tools in Less Constrained Segments

At the same time, there are hardly any formal restrictions on tools for consumer and
industrial embedded systems, unlike the other segments we discussed. The main
requirements are cost-effectiveness and speed, including fast feedback, iteration, and
shipping. If a tool is inexpensive and gets the job done, it's preferred. However, that
freedom comes with a risk: a lack of structure and predictability. Debugging can be
quick when it works but it can also become a critical bottleneck when it doesn't. Without
fitting tools or a clear process, teams often get stuck in test-iterate-postprocess loops
that don’t scale for complex projects.

Tools in Unconstrained Segments

Finally, we come to the opposite end of the compliance spectrum: university and
corporate R&D. Here, debugging is not about compliance constraints but about
possibility. There are essentially no regulations to adhere to, only prototypes to develop
and insights to pursue. Depending on their budget and focus, teams might set up a
complete dSPACE setup or put together a Python trace pipeline. Sometimes, they don't
adopt existing tools, but rather invent the ones that the rest of the industry will use five
years later. This is also the space from which es:saar came. Our tool, es:scope was
developed on test benches, in labs, and under pressure to determine why a system
was misbehaving.

Key Takeaways

e Compliance-constrained segments prioritize certification over flexibility.
In sectors like automotive, aerospace, medical, and military, tools must support
traceability, repeatability, and auditability. Introspection can be limited by legal,
regulatory, or security requirements, not technical feasibility.

e Less constrained segments value speed and pragmatism: In consumer and
industrial systems, the focus is on fast iteration and low cost. Engineers often
rely on lightweight tools, but this can introduce fragility and scaling issues as
systems mature and become more complex.

¢ Unconstrained environments foster experimentation and invention: In R&D
and academic contexts, the absence of compliance requirements allows teams
to build or adapt tools freely in pursuit of insightfully driving innovation across
the broader industry.

e There is no “best” tool, only the right one for your constraints: Effective
debugging is about aligning the tool’s capabilities with what you need to observe,
what you're allowed to observe, and what you must prove. That balance is
different in every segment.
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1.3 From Context to Selection

Toolchain Fragmentation Over Industry Segments

This brief overview has demonstrated that, over time, tools have been developed to
address specific problems within particular market segments under specific
constraints. Consequently, no single tool can cover all scenarios because no single
scenario defines embedded development. As embedded systems have grown in
complexity, so has the effort required to understand their real-world behavior.
Fortunately, the tools have kept up, and they continue to do so. However, as the tools
matured, the core issue shifted from limited insight to fragmented approaches to gain
insight. Now, each segment relies on familiar toolchains, which strengthens
diversification.

Selecting the Most Appropriate Tool

In theory, a lack of insight should not be due to inadequate tools nowadays, but rather
to an inappropriate choice of tools. In practice, however, the lack of tools can
exacerbate the problem. As we have seen, many embedded developers, particularly
those working with industrial and consumer systems, must use whatever tools are at
their disposal. The best way to select the most appropriate tool among the available
options is to start with individual constraints. Context always matters more than raw
power.

Navigating Between Insight and Trade-Off

After understanding the individual context, the next step is to find tools that align with
the necessary insights and associated trade-offs. In this article, we define three core
trade-offs: intrusion, effort, and depth of insight. In the next chapter, we will examine
the categories of available tools, the insights they offer, and how to evaluate them based
on these trade-offs. Our goal is not to define the "best" tools but to develop a practical
strategy for selecting the most appropriate ones given real-world constraints.
Ultimately, it's not just about tool capability. It's about fit.
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Part 2: The Tool Map

This chapter outlines the types of insights that embedded tools provide and explains
how to evaluate the relevant trade-offs. Most tools offer in-depth analysis of one aspect
of system behavior, such as timing, status, control flow, or internal state. However, they
rarely provide insights that extend beyond this focus without significant trade-offs. Each
tool serves a purpose, but when misunderstood or misapplied, even the most powerful
ones can create barriers or mislead developers about system behavior.

Insight Categories

In this text, we focus on insights into the runtime behavior of embedded systems. In the
introduction, we asked what we wanted to observe in system behavior, since this is a
broad term. Sometimes, behavioral insight is simply about the system's health: Is it
functioning properly? Is the CPU load acceptable? Has memory usage spiked? Other
times, we care about the execution flow, where we ask which functions are running,
whether the control logic is executing in the right order, whether a branch was taken,
and whether a task switch occurred. Then there is the event flow layer, which considers
how long operations take, when events occur relative to each other, and whether the
real-time behavior still meets system constraints. Finally, we may be interested in the
state flow of variables over time: How does a pulse width modulation (PWM) impact the
current ripple? Does a sensor signal have creepage? Is an internal flag toggling at the
right time? These questions divide behavioral insights into four layers.

1. System Health
Broad operating metrics like CPU load, free heap, error counters to observe
performance degradation, memory leaks, long-term uptime issues. Typical tools
are monitoring agents, dashboards, diagnostic logs. These will be excluded from
further discussion as this is usually only an aggregate of the other system
behavior insights.

2. Execution Flow (Logical Behavior)
Observe which functions run in which order to understand logic flow, tracking
regressions, uncovering concurrency issues.

3. Event Flow (Timing Behavior)
Observe the duration, and overlap, task timing, ISR jitter, preemption patterns to
detect race conditions, missed deadlines and responsiveness breakdowns.

4. State Tracking (Variable Behavior)
Focuses on internal data during runtime to control parameters, flags, counters,
etc. and to support tuning, loop debugging, and real-world validation.
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Trade-Off Categories

Engineers sometimes overvalue tool familiarity and undervalue trade-offs. However,
understanding tradeoffs and hidden costs is just as important as understanding
technical capabilities. To illustrate the trade-offs, consider tools such as hardware
tracers, which provide precise, non-intrusive insights. However, they require significant
setup effort and expertise. Conversely, low-effort options, such as variable watchers or
printf logging, are easy to integrate but typically offer shallow insight, missing timing
issues, masking concurrency problems, and distorting control flow.

The three key trade-off categories are intrusion, effort and insight depth:

1. Intrusion: Impact and change on system behavior.

2. Effort: Time spent setting up and maintaining tools, switching contexts, and
iterating the process.

3. Depth: The extent to which a tool reveals the behavior of a system through the
specific insights it provides.

Insight depth is a qualitative measure used here to evaluate how effectively a tool
reveals system behavior through the insights it provides. High depth offers broad, direct
visibility into internal behavior, whereas low depth results in narrow, indirect, or proxy-
based views. For example, logic analyzers deliver high timing accuracy at system
boundaries, but they provide limited insight into internal software behavior.
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The Tool Categories

analysis

Category Examples Strengths Best For Limitations Not Ideal For
Hardware Oscilloscopes, Logic | High signal | Debugging No access to | Debugging logic
Instruments Analyzers accuracy, accurate | electrical software flow or software
voltage and timing at | interfaces (SPI, | internals; physical | variables
pin-level I2C, UART) probing required
Hardware SEGGER J-Trace, | Precise, non- | Deep control- | Expensive; Low-cost projects;
Tracers Lauterbach TRACE32 intrusive execution | flow and timing | requires  silicon | dynamic tuning of
tracing; nanosecond | analysis support and | variables
timing dedicated probes
Software SEGGER SystemView, | RTOS-level task | Scheduling Limited variable | High-speed signal
Tracers Percepio Tracealyzer tracing; event | issues, inspection; adds | analysis or multi-
sequencing; visual | preemption overhead; variable
timeline views bugs interface debugging
bandwidth
constrained
HiL Platforms | dSPACE, NI VeriStand Full system | Certification High cost, long | Quick iteration,
simulation and | workflows, setup, limited | low-level software
validation with | integration internal  visibility | insight
environment models | testing without extra
and I/O tooling
Calibration Vector CANape, ETAS | Real-time calibration | Standard ECU | Complex setup; | Bare-metal
Protocols INCA (XCP/CCP) in automotive ECUs; | parameter limited speed and | systems, dynamic
works with industry | tuning flexibility; observability
standards intrusive in some
configurations
IDE STM32CubelDE, Keil | Step-through Start-up Halts execution; | Debugging race
Debuggers uVision, GDB execution, debugging, breaks real-time | conditions or
breakpoint logic, | logic validation | behavior; timing bugs
memory inspection intrusive
Variable STM32CubeMonitor, Live view of scalar | Parameter Limited signal | Complex data
Watch Tools Infineon Microlnspector variables; fast setup; | tuning, basic | types; vendor- | correlation, high-
no external | diagnostics locked; low | speed feedback
hardware needed bandwidth for | loops
fast-changing
data
Custom UART prints, GPIO pulse | Universally Early bring-up, | Manual sync; | Timing-critical
Logging tagging, CSV + Python accessible, prototype lacks structure; | systems or
hardware-agnostic, insight hard to maintain; | structured debug
low cost not scalable workflows
es:scope® es:scope, es:prot | Real-time variable | Control tuning, | Needs firmware | RTOS flow
Platform (middleware) introspection; signal integration; not a | tracing, post-
scope-like views; | dynamics, task tracer; not for | mortem failure
interface-agnostic feedback loops | historical stack | reconstruction
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Part 3: The Categories in Detail

Now that we have mapped space of insight, trade-off and tool categories, the next
chapter will link these by analyzing each tool category for the insight and tradeoff. We
start at the edge of the system with hardware measurement tools and progress from
hardware to software-based tools. This is not based on a scientific method or
evaluation, but rather on developer experience which risks sacrificing measurable truth
for usefulness.

Hardware Instruments

Oscilloscopes and logic analyzers from Tektronix, Keysight, and Rohde & Schwarz offer
unmatched signal-level precision. These devices are the gold standard for verifying
input/output (I/0O) timing and decoding hardware protocols. However, they are
ineffective beyond the system boundary. They cannot be used to understand execution
flow; they can only be used to understand the signals that reach the pins, which can
provide indirect insight into state and events. This can be useful for exposed signals.
Apart from that, they are often too removed to provide behavioral insight.

Metric Score  Justification

Event Flow  +2 These tools are best-in-class for signal-level timing accuracy. You get exact edge
timing, pulse width, jitter, and delays with nanosecond resolution.

Execution -2 They can't access or interpret software logic, branching, or task switching. You only

Flow infer behavior indirectly from physical I/O.

State Flow -2 They provide no access to internal variables or memory. Unless variables are
exposed through pins, you're blind to them.

Intrusion +2 Totally non-intrusive. They observe signals passively without touching system
execution.

Setup 0 Moderate. Requires physical wiring and knowledge of signal mapping for signals.

Effort If state variables are supposed to be exposed this has to be set up.

Depth -1 Offers high timing insight at system boundaries but lacks visibility into internal

behavior. The insight depth is low.
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Hardware Tracing Tools

Tracing tools such as SEGGER J-Trace and Lauterbach TRACE32 use on-chip tracing
architectures, like ARM CoreSight and Infineon MCDS, to capture execution paths at
the instruction level, task switches, and precise timing, all with minimal intrusion during
runtime. They are irreplaceable for diagnosing race conditions, validating execution
paths, and analyzing deeply embedded real-time systems. They offer the perfect deal
on the surface: fast, low-intrusion access to internal state, memory, and trace buffers.
However, in the real world, the right interface may be missing, disabled in production,
or limited by the silicon vendor. Trace bandwidth may collapse under high-frequency
execution. In-depth analysis of controller variables may require extensive post-

processing.

Event Flow @ +2

Execution +2
Flow

State Flow 0
Intrusion 1
Setup -1
Effort

Depth +2

Metric Score  Justification

These tools capture timestamped execution traces with cycle-level accuracy.
Perfect for identifying jitter, latency, race conditions.

Full visibility into execution flow: function calls, context switches, and branching
even across interrupts and threads.

Can capture variable changes if trace instrumentation is added, but this often
requires extensive post-processing. Not suited for high bandwidth streaming or live
tuning

Nearly zero runtime impact, but trace bandwidth can limit visibility during high
activity.

Setup is complex: you need the right silicon support, external probes, and trace
clocks/pins. Often painful to configure across toolchains.

These tools are integrated directly into the hardware, providing the deepest
possible insight into runtime behavior. They capture execution, timing, and system
state in exceptional detail.
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Software Tracing Tools

When it comes to tracing, tools such as SEGGER SystemView and Percepio Tracealyzer
provide more user-friendly solutions. They integrate with RTOS events and instrument
application code. They also stream execution traces via SWO or UART. These tools
provide insight into task scheduling, event timing, and flow behavior. They also have
lower setup costs and broader accessibility.

However, they also have limitations. Runtime overhead, limited data throughput, and
the need for manual instrumentation reduce precision. Although the required setup
effort is reduced, it shifts to software setup. These tools help track control flow but often
cannot display variable state changes quickly enough to debug unstable loops or
sensor anomalies.

Metric Score Justification

Event Flow = +1 Provides reasonably accurate timestamps for RTOS events and user-instrumented
markers. Limited by interface bandwidth and timestamp resolution (e.g.
SWO/UART).

Execution +1 Captures task switches, interrupt entry/exit, and application-level events. Good for

Flow understanding RTOS behavior and logic sequencing.

State Flow 0 Can show variable changes if manually instrumented but not designed for fast or
continuous streaming. Adds code overhead, lacks tuning-grade feedback.

Intrusion 0 Moderate. Adds runtime overhead through instrumentation and streaming,
especially over UART/SWO. May affect some timing-sensitive systems.

Setup 0 Easier than hardware tracers. Mostly software integration with vendor libraries but

Effort still requires careful tracepoint planning.

Depth +1 Offers high contextual clarity at the RTOS level, but limited resolution for very fast
or deeply nested code paths.
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HiL Platforms

Hardware-in-the-loop (HIL) systems, such as those offered by dSPACE and NI, simulate
the entire physical environment around the embedded system being tested. These
systems are essential for validating complex systems under realistic conditions. They
are also fundamental to certification workflows, especially in safety-critical domains.

These platforms have evolved into active observability environments that can capture
signal traces, bus communication, and plant behavior with synchronized precision.
With the right tools, engineers can inject faults, automate test scenarios, adjust
parameters, and monitor system variables in real time. However, HIL visibility primarily
focuses on external interactions and test responses rather than deep internal software
execution. Accessing internal behavior, such as function execution or low-level timing,
requires additional instrumentation and setup. Debug interfaces, calibration protocols
(e.g., XCP), and internal model hooks are used for this purpose. This often involves
time-consuming customization. Additionally, HiL systems are usually closed toolchains,
so flexibility is limited when dealing with edge cases, such as pulse width modulation
(PWM) details, asynchronous events, or custom triggers. HiL platforms excel at
showing how the system responds to a test scenario. However, understanding why the
system behaved in a certain way often requires deeper tracing or introspective tools,
especially when relying on standard configurations.

Metric Score | Justification

Event Flow = +1 Able to measure timing at the I/O, bus, and plant simulation levels. Supports
synchronized signal injection and capture. Not cycle-exact at the firmware level but
excellent for system-level timing validation.

Execution 0 Limited. While some internal software state can be observed through model

Flow instrumentation or exposed interfaces (e.g. XCP), HiL is not built for tracing internal
execution logic like task switches or instruction flow.

State Flow = +1 Good capabilities via integration with calibration protocols (XCP, CCP) or mapped
I/O variables. Good for test automation and system validation scenarios.

Intrusion +1 Low to moderate. HiL testing is typically non-intrusive at the signal level but
depends on how internal variables are exposed and instrumented.

Setup -2 Very high. Requires plant models, hardware setup, simulation validation, and

Effort integration with DUT.

Depth -1 Provides strong system-level correlation between inputs and outputs under real-
world conditions but lacks visibility into internal software behavior unless
specifically instrumented. Insight is broad but indirect in default configurations.
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XCP/CCP Calibration Tools

Tools like Vector CANape and ETAS INCA are excellent at their intended purpose: live
calibration and variable measurement via XCP or CCP. This is essential in automotive
ECUs. However, these tools have limited functionality, providing little insight into control
flow or real-time task interaction. Additionally, setup and infrastructure can be
cumbersome, rendering them less suitable for early-stage or non-automotive
development.

Metric
Event Flow

Execution
Flow
State Flow

Intrusion
Setup

Effort
Depth

Score  Justification

-1

-2

+1

+1

+1

Very limited. Not designed to capture precise timing, task durations, or execution
flow. Sampling intervals depend on bus bandwidth and configuration.

None. These tools provide no view into function calls, logic flow, or scheduling
behavior.

Excellent. Designed for high-precision, real-time variable access. Supports
calibration, logging, and measurement of mapped internal variables through
XCP/CCP.

Low. Works via dedicated measurement protocols (XCP/CCP), designed to be
minimally intrusive on the running system.

Moderate to high. Requires proper integration into the build system (A2L files),
variable mapping, and configuration.

Offers high-resolution access to internal variable states in calibrated ECUs, making
it ideal for tuning and validation. However, it lacks visibility into control flow and
timing behavior, and insight is limited to predefined, scalar-accessible data.

Page 16

https://essaar.de/en



https://essaar.de/en

IDE Debuggers

For many engineers, the debugger integrated into their IDE, such as GDB, Keil, or
STM32CubelDE, is their go-to tool. These debuggers are ideal for identifying specific
types of bugs, including stack overflows, memory corruption, and logic errors.
However, they are fundamentally intrusive. Breakpoints halt execution. Stepping
distorts timing. In real-time or concurrent systems, this approach often masks the bug
you're trying to expose. Breakpoints are useful, especially in the early stages of
development, but they can be misused in systems where timing is the problem.

Metric Score Justification

Event Flow -2 Very poor. Halting the system destroys timing context. Cannot observe real-time
execution or concurrency.

Execution 0 Moderate. Stepping through code gives insight into logic paths, but not under real-

Flow time conditions. Limited to static exploration.

State Flow  +1 Good for local variable inspection, stack content, and memory access. But not real-
time.

Intrusion -2 High. Requires halting or stepping the CPU. Distorts or breaks real-time behavior.

Setup +2 Very low. Integrated in most IDEs, typically works out-of-the-box with minimal

Effort configuration.

Depth +1 It offers deep symbolic access to all system internals, including registers, memory,
and variables, at any point in time. However, since insight is only available during
halted execution, there is a lack of continuity and context for observing real-world
runtime behavior.
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Custom Logging and Scripting

Printf logging, GPIO edge tagging, and CSV dumps with Python post-processing work
well in resource-constrained environments and for early prototyping. However, they do
not scale well for embedded development. Logs get out of sync. Timing becomes
distorted. Analysis becomes manual, slow, and error-prone. While these methods solve
immediate problems, they introduce hidden costs, such as tribal knowledge, fragility,
and an increased maintenance burden.

Event -1
Flow
Execution -1
Flow
State 0
Flow
Intrusion -1

Setup -2
Effort
Depth 0

Metric Score Justification

Low. GPIO tagging can offer basic event timing, but UART/printf
distorts execution and lacks precision. Alignment issues common.
Limited. Printfs or GPIO toggles can signal when a code block runs,
but offer no structured or high-resolution flow tracking.

Moderate. Can output variables manually; flexible, but labor-
intensive and not scalable.

Medium to high. Printfs and logging distort timing, consume CPU
cycles, and may interfere with behavior.

High. Requires custom code, script maintenance, sync work, and
post-processing. Error-prone and manual.

Offers basic visibility through custom signals or logs, but lacks
structured, continuous, or scalable insight. Depth depends entirely
on manual effort and design-time foresight, making it fragile and
inconsistent.
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Variable Watch Tools

In response to the need for real-time tuning, many silicon vendors now offer variable
watch tools, such as STM32CubeMonitor, Microlnspector from Infineon, and Real-Time
Chart from Renesas. These tools connect via debug interfaces to extract scalar variable
values in near real time. They’re ideal for parameter tuning and early validation.
However, they are limited to pre-selected variables, are often vendor-locked, and are
constrained by bandwidth. Additionally, they don't capture timing, task context, or
control flow.

Metric Score Justification

Event P Minimal. No access to execution timing, scheduling, or delays. Not

Flow suitable for debugging timing-sensitive behavior.

Execution P None. Offers no awareness of task switches, execution paths, or

Flow logic flow.

State » High for selected variables. Fast feedback, continuous updates of

Flow scalar variables. Limited to pre-defined, low-bandwidth channels.

Intrusion o Low to moderate. Generally safe for runtime use, but performance
impact depends on polling frequency and interface.

Setup » Low. Provided by chip vendors, integration is usually simple and

Effort well-documented.

Depth » Focused. Excellent for parameter tuning and watching control
signals, but blind to system behavior outside selected variables.
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es:scope platform

The ES:Scope platform is a software-based testing and measurement solution for
embedded systems. It includes lightweight C middleware for the target and a desktop
application that offers runtime visibility and interaction with internal variables via
standard interfaces, such as UART, USB, and Ethernet.

The platform enables virtual probing and live tuning without the need for external
hardware. Its strength lies in variable-level access and runtime interaction. Although it
is limited in control-flow insight, it offers a pragmatic, lightweight alternative for many
visibility and calibration tasks.

Metric
Event Flow

Execution
Flow
State Flow

Intrusion

Setup

Effort

Depth

Score  Justification

0

+2

+1

+1

Indirect. While not designed for timing trace or scheduling analysis, sampling rates
may be sufficient for timing correlation between signals depending on update rate
and signal behavior.

Not the focus. No native function-level tracing or task execution tracking. Not
intended to replace ETM/SWV/RTOS-aware tools.

Strong. High-speed streaming of scalar variable data with live interaction and
tuning. Virtual probes offer flexible low-intrusive access and interface-agnostic
offer flexible transmission.

Low. Instrumentation is lightweight and interface-agnostic; uses standard transport
layers. Does not block or halt execution. Impact depends on bandwidth
configuration and sampling strategy.

Moderate to low. Requires integration of es:prot middleware into the target, but no
external probes or vendor-specific tooling needed. Desktop setup is
straightforward once middleware is running.

Provides strong, real-time visibility into internal variables with live tuning and virtual
probes.
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Key Takeaways

Most teams have the tools they need to capture certain aspects of system behavior.
However, very few tools offer insight across boundaries, such as those between timing
and logic, function flow and variable state, and system behavior and internal causality.
Each category exists for a reason. However, none exist without tradeoffs. What matters
isn't just what a tool does, but also how it does it and the cost in terms of procurement,
setup, and usage. Moreover, the real cost isn’t just effort; it’s the delay in understanding
and time to insight.

When debugging needs to happen in real time across layers and often in the field, that
cost becomes a bottleneck. Effort becomes unpredictable, and getting stuck in
adjustment iterations becomes the norm. That’s why understanding this landscape
matters. It's not about replacing tools that work, but rather knowing where they work,
where they don't, and what's missing in between. The following table summarizes this
landscape.

Insight Tradeoff
Control Flow Variable State Setup and
Category Timing Insight | Insight Insight Intrusion usage effort Depth
Hardware
0 -1
Instruments
Software 1 1 0 0 0 1
Tracers
Hardware
Tracers
HiL Platforms 1 0
Calibration 1 1
Protocols

Variable Watch
-1 -1
Tools

es:scope® 0 -1

Custom Logging ' -1 -1
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Part 4: Summary

When selecting a tool for observing embedded system behavior, the challenge is rarely
technical capability alone. Instead, it’s about finding the right fit—given constraints,
requirements, and trade-offs. The following three-step process can help guide effective
tool selection:

1. Context
Start by understanding your unique situation:

e What do you need to observe? Timing, logic, state?

e What are you allowed to observe? Consider compliance, security, or legal
limitations.

e What must you prove? Auditable traceability, functional safety, or runtime
correctness?

¢ What tools are available to you? Account for your budget, platform support, and
existing infrastructure.

2. Insight
Identify the kind of insight your task requires:

e Timing Insight: Do you need to know when things happen, with meaningful time
resolution?

e Control Flow Insight: Do you need to trace what code runs and in what order?

e Variable State Insight: Do you need to observe how internal data changes at
runtime?

3. Tradeoff
Every tool comes with compromises. Evaluate them:

¢ Intrusion: Will the tool alter system behavior or add significant runtime overhead?

e Effort: How much setup, integration, and iteration does the tool require?

¢ Insight Depth: Will the insight be direct and detailed or limited to indirect, proxy-
level observations?

Ultimately, choosing the right tool is a strategic decision, not just a technical one. The
more your needs align with the tool's capabilities, the faster and more confidently you
can bridge the gap between design and behavior. In embedded systems, insight
defines what is observable. Only what is observable can be controlled.
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Disclaimer

As of this writing, |, Joshua Summa, am the CEO of es:saar, the company behind the
es:scope platform discussed in this article. While every effort has been made to present
an objective and balanced view of embedded tooling, it is important to disclose this
affiliation explicitly. The evaluations and comparisons in this document reflect practical
experience and technical analysis, but readers should be aware of this potential source
of bias.
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