

Abstract:

As embedded systems have grown more complex, so has the need to understand how

they behave in the real world. Fortunately, available tools have kept up with this demand,

and they continue to improve. However, as these tools have matured, the core issue

has shifted from limited insight to fragmented approaches to gain it. Over time, several

tool families have emerged to address specific analysis problems within particular

market segments under specific constraints. There is no single scenario that defines

embedded development. Accordingly, no single tool can cover all scenarios. Each

segment now relies on familiar toolchains, which strengthens fragmentation.

The best way to select the most appropriate tool from the available options is to start

with the specific context of the situation. Context always matters more than raw power.

Next, find tools that align with the necessary insights and associated trade-offs.

Ultimately, it's not just about tool capability. It's about fit. This guide is designed to help

readers find the right fit.

Page 1 https://essaar.de/en

The Appropriate Tool for Behavioral Insight

Selecting the Right Introspection Tool to Debug the Runtime

Behavior of an Embedded System

All engineering teams working in the field of embedded systems face the same

challenge. At some point, they must reconcile design intent with real-world behavior.

Whether they are bound by automotive compliance, able to move quickly without these

constraints, or need to calibrate a sensor or tune a sophisticated controller, their

approach remains essentially the same. They must observe, validate, and adjust

runtime system behavior.

However, "system behavior" is a broad term, so it's important to consider what it actually

means. As engineers, what are we attempting to observe?

Sometimes, it's about observing a system’s health. Is the system stable and

responsive? Does it remain within acceptable limits? Other times, we're interested in

execution and event flow. Which functions ran, when, and in what order? Sometimes,

it comes down to state changes in variable values. The problem is that no single tool

can provide insight into all these areas without significant trade-offs. Most tools excel

in one area but compromise in others.

This leads us to the topic of this article. We will explore the types of insights and trade-

offs that developers of embedded systems face when selecting tools to interface with

their runtime behavior. Before delving into these categories, however, it is important to

understand the context in which these tools were developed. We will briefly review their

history and the reasons for their significant differences across industries. In summary,

this article aims to answer a single question:

How should one choose the right tool to interface with the runtime behavior of an

embedded system?

https://essaar.de/en

Page 2 https://essaar.de/en

Part 1: Tool Evolution and Segment Realities ... 3

1.1 Evolution of Introspection Tools ... 3

Before 1990: The Early Days of Inaccessibility ... 3

1990s: Internal Introspection ... 3

2000s: The Emergence of Tracing .. 3

2010s: From Tooling Constraints to Fragmentation .. 4

After 2010: The Shift to Custom Toolchains .. 4

Key Takeaways ... 5

1.2 Segments Realities for Introspection Tools .. 6

Tools in Compliance Constrained Segments .. 6

Tools in Less Constrained Segments ... 7

Tools in Unconstrained Segments .. 7

Key Takeaways ... 7

1.3 From Context to Selection ... 8

Toolchain Fragmentation Over Industry Segments .. 8

Selecting the Most Appropriate Tool .. 8

Navigating Between Insight and Trade-Off .. 8

Part 2: The Tool Map .. 9

Insight Categories ... 9

Trade-Off Categories .. 10

The Tool Categories .. 11

Part 3: The Categories in Detail .. 12

Hardware Instruments .. 12

Hardware Tracing Tools .. 13

Software Tracing Tools ... 14

HiL Platforms.. 15

XCP/CCP Calibration Tools .. 16

IDE Debuggers .. 17

Custom Logging and Scripting .. 18

Variable Watch Tools ... 19

es:scope platform .. 20

Key Takeaways ... 21

Part 4: Summary ... 22

Disclaimer .. 23

https://essaar.de/en

Page 3 https://essaar.de/en

Part 1: Tool Evolution and Segment Realities

1.1 Evolution of Introspection Tools

Before 1990: The Early Days of Inaccessibility

In the early days of embedded systems, the 8- and 16-bit microcontrollers of the 70s

and 80s developers faced extreme constraints: no runtime hooks, no memory to spare,

and no structured visibility. Debugging meant toggling LEDs or sending out serial logs.

Oscilloscopes could validate pin-level timing but gave no insight into what software was

doing. EPROM-based workflows made iteration painfully slow, and in-circuit emulators

(ICEs), though powerful relative to other tools of the time, were expensive and

inaccessible to many.

1990s: Internal Introspection

The shift from EPROMs to flash memory significantly shortened iteration cycles. In the

mid-1990s, the use of ICEs changed with the adoption of on-chip debugging via

interfaces such as JTAG. These interfaces provided direct access to the processor's

state, eliminating the need for specialized emulation hardware. This lowered costs and

reduced setup complexity. Although integration remained fragmented, debugging

became more accessible, supported by an increasing number of vendor tools and early

integrated development environments (IDEs). This marked the start of insights into the

internal behavior of an embedded system. At the same time, tools for embedded

systems were tailored to segment-specific requirements. Hardware-in-the-loop (HiL)

systems began to be adopted, and the CAN calibration protocol (CCP) was introduced

by ASAM in 1994. For the first time, developers could measure and calibrate ECU

parameters during execution.

2000s: The Emergence of Tracing

From 2000 to 2010, embedded systems evolved from basic task-switching software

into real-time capable platforms. The widespread adoption of real-time operating

systems (RTOS) created new demands for debugging. Engineers needed time-

correlated insight into task switches, interrupts, and variable behavior, something that

traditional breakpoint-based debugging could not provide. In response, tool and silicon

vendors developed new solutions. For example, ARM introduced Serial Wire Debug

(SWD) as an improvement over JTAG and its CoreSight infrastructure with the Cortex-

M3. This enabled engineers to use instruction tracing features, such as the Embedded

Trace Macrocell and the Instrumentation Trace Macrocell, as well as data streaming via

the Serial Wire Viewer (SWV). Meanwhile, other vendors, including Infineon, NXP

(formerly Philips), and Renesas, promoted their own debugging and tracing strategies.

Tool vendors such as Lauterbach, PE Micro, and IAR Systems integrated these

https://essaar.de/en

Page 4 https://essaar.de/en

architectures to provide tracing and live introspection, though capabilities varied

depending on the silicon. For example: SEGGER's J-Link, introduced in the early 2000s,

expanded SWV support by 2008. This enabled trace capabilities on Cortex-M devices

for a broader market.

2010s: From Tooling Constraints to Fragmentation

From 2010 to 2020, the demand for real-time performance increased, and multicore

processors became standard even in mid-tier embedded applications. This pushed

silicon and tool vendors further. ARM’s CoreSight introduced the Trace Memory

Controller (TMC) and the Embedded Trace Router (ETR), which enabled trace

collection and streaming through high-bandwidth interfaces. Tools such as the

SEGGER J-Trace Pro made live ETM streaming possible, enabling developers to collect

instruction-level trace data in real time on the host machine. Outside of ARM, Infineon’s

MCDS + AGBT, Renesas's advanced debug interface, and NXP’s Nexus trace offered

comparable capabilities and increasingly specialized in automotive, industrial, and

safety-oriented applications.

While this symbiosis between silicon and tool vendors developed further, a novel

approach matured during this time: software tracing platforms. These platforms

became a viable alternative for many applications. Tools such as Percepio's Tracealyzer

offer visual timelines, interruption heat maps, CPU load graphs, and state transition

models. With these tools, developers could observe their systems' behavior for race

conditions and measure jitter, preemption patterns, or latency bottlenecks.

After 2010: The Shift to Custom Toolchains

By the end of the 2010s, the landscape of embedded tools had fractured. There was a

tool for every use case, segment, and budget. However, it was rare for one tool to work

across boundaries. The challenge was no longer tool availability. The challenge was

stitching together insights across layers of timing, control flow, and variable state.

Nevertheless, a complete toolchain exists. In regulated environments such as

automotive and aerospace, teams sometimes build complete dynamic testing stacks

by combining hardware-in-the-loop (HiL) platforms, trace tools, and calibration

protocols such as XCP. These setups can deliver near-total observability of timing,

control flow, and variable access. However, this level of visibility comes at a cost:

dedicated infrastructure, custom integration, and maintenance that few teams outside

of these regulated environments can afford. For everyone else, selecting the right tools

for insight is a trade-off. This trend has only accelerated since 2020. Today's embedded

systems are real-time, distributed, field-deployed, and often decoupled from traditional

debugging infrastructure. The old problem was acquiring sufficient tools. The new

problem is choosing the right tool.

https://essaar.de/en

Page 5 https://essaar.de/en

Key Takeaways

• Before 1990: Embedded debugging was constrained by hardware limitations.

Engineers relied on indirect methods like LEDs and oscilloscopes. System

internals were essentially invisible.

• 1990 - 2000: On-chip debugging (via JTAG) and flash memory shortened

iteration times and marked the start of internal system introspection. Tool

support grew, and real-time calibration protocols emerged.

• 2000-2010: The rise of RTOS-driven systems created demand for time-

correlated debugging. Trace infrastructure (e.g., SWD, SWV, ETM) enabled real-

time visibility. Tools integrated these features to varying degrees.

• After 2010: The challenge shifted from tool availability to tool selection and

integration. Highly specialized toolchains enable full observability in regulated

industries, but most teams must balance cost, complexity, and insight.

https://essaar.de/en

Page 6 https://essaar.de/en

1.2 Segments Realities for Introspection Tools

Not all engineering teams face the same constraints, risks, or realities. Having looked

at how embedded debugging has evolved over time, the next step is to understand how

it varies across different market segments. Depending on the industry, debugging and

tuning embedded systems can mean vastly different things. At one end of the spectrum

are the “four horsemen of compliance” in electronics: Automotive, Medical, Aerospace,

and Military. At the other end of the spectrum are consumer and industrial embedded

systems, as well as R&D endeavors.

Tools in Compliance Constrained Segments

In the automotive industry, the ISO 26262 standard influences nearly every decision,

from the use of XCP-based calibration tools such as CANape to the integration of ECUs

into full-scale hardware-in-the-loop environments from companies like dSPACE and

National Instruments (NI). The cost is enormous, but so are the safety requirements.

The result is a rigid, high-assurance pipeline with certified validation platforms.

Automotive debugging is shaped not by what’s technically possible, but by what’s

certifiable and required. In aerospace, this concept is taken even further. It's not just

about whether a debugger can provide insight to tune a controller, but also whether it

can perform consistently under audit. This leaves little room for dynamic, exploratory

debugging. Medical devices face similar constraints, albeit with a different flavor.

Regulatory bodies require compliance and design traceability from requirements to test

results. Debug ports are usually locked down during production or field testing. Logging

is then non-intrusive, scrubbed of patient data, and subject to audit. The barrier to

insight here is legal, not technical. Engineers may want full runtime visibility, but unless

it's validated, encrypted, and documented, it's out of the question. In military

applications, all compliance demands converge, including extreme performance

requirements, strict safety and mission-critical reliability standards, and

uncompromising information security measures. Tooling must support highly

deterministic systems under real-time constraints, often on ruggedized or custom

hardware, while meeting stringent assurance standards such as DO-178 for defense

aviation and MIL-STD guidelines. Debugging and introspection tools must be examined

for telemetry risks and operated within tightly controlled, often classified, environments.

https://essaar.de/en

Page 7 https://essaar.de/en

Tools in Less Constrained Segments

At the same time, there are hardly any formal restrictions on tools for consumer and

industrial embedded systems, unlike the other segments we discussed. The main

requirements are cost-effectiveness and speed, including fast feedback, iteration, and

shipping. If a tool is inexpensive and gets the job done, it's preferred. However, that

freedom comes with a risk: a lack of structure and predictability. Debugging can be

quick when it works but it can also become a critical bottleneck when it doesn't. Without

fitting tools or a clear process, teams often get stuck in test-iterate-postprocess loops

that don’t scale for complex projects.

Tools in Unconstrained Segments

Finally, we come to the opposite end of the compliance spectrum: university and

corporate R&D. Here, debugging is not about compliance constraints but about

possibility. There are essentially no regulations to adhere to, only prototypes to develop

and insights to pursue. Depending on their budget and focus, teams might set up a

complete dSPACE setup or put together a Python trace pipeline. Sometimes, they don't

adopt existing tools, but rather invent the ones that the rest of the industry will use five

years later. This is also the space from which es:saar came. Our tool, es:scope was

developed on test benches, in labs, and under pressure to determine why a system

was misbehaving.

Key Takeaways

• Compliance-constrained segments prioritize certification over flexibility.

In sectors like automotive, aerospace, medical, and military, tools must support

traceability, repeatability, and auditability. Introspection can be limited by legal,

regulatory, or security requirements, not technical feasibility.

• Less constrained segments value speed and pragmatism: In consumer and

industrial systems, the focus is on fast iteration and low cost. Engineers often

rely on lightweight tools, but this can introduce fragility and scaling issues as

systems mature and become more complex.

• Unconstrained environments foster experimentation and invention: In R&D

and academic contexts, the absence of compliance requirements allows teams

to build or adapt tools freely in pursuit of insightfully driving innovation across

the broader industry.

• There is no “best” tool, only the right one for your constraints: Effective

debugging is about aligning the tool’s capabilities with what you need to observe,

what you're allowed to observe, and what you must prove. That balance is

different in every segment.

https://essaar.de/en

Page 8 https://essaar.de/en

1.3 From Context to Selection

Toolchain Fragmentation Over Industry Segments

This brief overview has demonstrated that, over time, tools have been developed to

address specific problems within particular market segments under specific

constraints. Consequently, no single tool can cover all scenarios because no single

scenario defines embedded development. As embedded systems have grown in

complexity, so has the effort required to understand their real-world behavior.

Fortunately, the tools have kept up, and they continue to do so. However, as the tools

matured, the core issue shifted from limited insight to fragmented approaches to gain

insight. Now, each segment relies on familiar toolchains, which strengthens

diversification.

Selecting the Most Appropriate Tool

In theory, a lack of insight should not be due to inadequate tools nowadays, but rather

to an inappropriate choice of tools. In practice, however, the lack of tools can

exacerbate the problem. As we have seen, many embedded developers, particularly

those working with industrial and consumer systems, must use whatever tools are at

their disposal. The best way to select the most appropriate tool among the available

options is to start with individual constraints. Context always matters more than raw

power.

Navigating Between Insight and Trade-Off

After understanding the individual context, the next step is to find tools that align with

the necessary insights and associated trade-offs. In this article, we define three core

trade-offs: intrusion, effort, and depth of insight. In the next chapter, we will examine

the categories of available tools, the insights they offer, and how to evaluate them based

on these trade-offs. Our goal is not to define the "best" tools but to develop a practical

strategy for selecting the most appropriate ones given real-world constraints.

Ultimately, it's not just about tool capability. It's about fit.

https://essaar.de/en

Page 9 https://essaar.de/en

Part 2: The Tool Map

This chapter outlines the types of insights that embedded tools provide and explains

how to evaluate the relevant trade-offs. Most tools offer in-depth analysis of one aspect

of system behavior, such as timing, status, control flow, or internal state. However, they

rarely provide insights that extend beyond this focus without significant trade-offs. Each

tool serves a purpose, but when misunderstood or misapplied, even the most powerful

ones can create barriers or mislead developers about system behavior.

Insight Categories

In this text, we focus on insights into the runtime behavior of embedded systems. In the

introduction, we asked what we wanted to observe in system behavior, since this is a

broad term. Sometimes, behavioral insight is simply about the system's health: Is it

functioning properly? Is the CPU load acceptable? Has memory usage spiked? Other

times, we care about the execution flow, where we ask which functions are running,

whether the control logic is executing in the right order, whether a branch was taken,

and whether a task switch occurred. Then there is the event flow layer, which considers

how long operations take, when events occur relative to each other, and whether the

real-time behavior still meets system constraints. Finally, we may be interested in the

state flow of variables over time: How does a pulse width modulation (PWM) impact the

current ripple? Does a sensor signal have creepage? Is an internal flag toggling at the

right time? These questions divide behavioral insights into four layers.

1. System Health

Broad operating metrics like CPU load, free heap, error counters to observe

performance degradation, memory leaks, long-term uptime issues. Typical tools

are monitoring agents, dashboards, diagnostic logs. These will be excluded from

further discussion as this is usually only an aggregate of the other system

behavior insights.

2. Execution Flow (Logical Behavior)

Observe which functions run in which order to understand logic flow, tracking

regressions, uncovering concurrency issues.

3. Event Flow (Timing Behavior)

Observe the duration, and overlap, task timing, ISR jitter, preemption patterns to

detect race conditions, missed deadlines and responsiveness breakdowns.

4. State Tracking (Variable Behavior)

Focuses on internal data during runtime to control parameters, flags, counters,

etc. and to support tuning, loop debugging, and real-world validation.

https://essaar.de/en

Page 10 https://essaar.de/en

Trade-Off Categories

Engineers sometimes overvalue tool familiarity and undervalue trade-offs. However,

understanding tradeoffs and hidden costs is just as important as understanding

technical capabilities. To illustrate the trade-offs, consider tools such as hardware

tracers, which provide precise, non-intrusive insights. However, they require significant

setup effort and expertise. Conversely, low-effort options, such as variable watchers or

printf logging, are easy to integrate but typically offer shallow insight, missing timing

issues, masking concurrency problems, and distorting control flow.

The three key trade-off categories are intrusion, effort and insight depth:

1. Intrusion: Impact and change on system behavior.

2. Effort: Time spent setting up and maintaining tools, switching contexts, and

iterating the process.

3. Depth: The extent to which a tool reveals the behavior of a system through the

specific insights it provides.

Insight depth is a qualitative measure used here to evaluate how effectively a tool

reveals system behavior through the insights it provides. High depth offers broad, direct

visibility into internal behavior, whereas low depth results in narrow, indirect, or proxy-

based views. For example, logic analyzers deliver high timing accuracy at system

boundaries, but they provide limited insight into internal software behavior.

https://essaar.de/en

Page 11 https://essaar.de/en

The Tool Categories

Category Examples Strengths Best For Limitations Not Ideal For

Hardware

Instruments

Oscilloscopes, Logic

Analyzers

High signal

accuracy, accurate

voltage and timing at

pin-level

Debugging

electrical

interfaces (SPI,

I²C, UART)

No access to

software

internals; physical

probing required

Debugging logic

flow or software

variables

Hardware

Tracers

SEGGER J-Trace,

Lauterbach TRACE32

Precise, non-

intrusive execution

tracing; nanosecond

timing

Deep control-

flow and timing

analysis

Expensive;

requires silicon

support and

dedicated probes

Low-cost projects;

dynamic tuning of

variables

Software

Tracers

SEGGER SystemView,

Percepio Tracealyzer

RTOS-level task

tracing; event

sequencing; visual

timeline views

Scheduling

issues,

preemption

bugs

Limited variable

inspection; adds

overhead;

interface

bandwidth

constrained

High-speed signal

analysis or multi-

variable

debugging

HiL Platforms dSPACE, NI VeriStand Full system

simulation and

validation with

environment models

and I/O

Certification

workflows,

integration

testing

High cost, long

setup, limited

internal visibility

without extra

tooling

Quick iteration,

low-level software

insight

Calibration

Protocols

Vector CANape, ETAS

INCA (XCP/CCP)

Real-time calibration

in automotive ECUs;

works with industry

standards

Standard ECU

parameter

tuning

Complex setup;

limited speed and

flexibility;

intrusive in some

configurations

Bare-metal

systems, dynamic

observability

IDE

Debuggers

STM32CubeIDE, Keil

uVision, GDB

Step-through

execution,

breakpoint logic,

memory inspection

Start-up

debugging,

logic validation

Halts execution;

breaks real-time

behavior;

intrusive

Debugging race

conditions or

timing bugs

Variable

Watch Tools

STM32CubeMonitor,

Infineon MicroInspector

Live view of scalar

variables; fast setup;

no external

hardware needed

Parameter

tuning, basic

diagnostics

Limited signal

types; vendor-

locked; low

bandwidth for

fast-changing

data

Complex data

correlation, high-

speed feedback

loops

Custom

Logging

UART prints, GPIO pulse

tagging, CSV + Python

Universally

accessible,

hardware-agnostic,

low cost

Early bring-up,

prototype

insight

Manual sync;

lacks structure;

hard to maintain;

not scalable

Timing-critical

systems or

structured debug

workflows

es:scope®

Platform

es:scope, es:prot

(middleware)

Real-time variable

introspection;

scope-like views;

interface-agnostic

Control tuning,

signal

dynamics,

feedback loops

Needs firmware

integration; not a

task tracer; not for

historical stack

analysis

RTOS flow

tracing, post-

mortem failure

reconstruction

https://essaar.de/en

Page 12 https://essaar.de/en

Part 3: The Categories in Detail

Now that we have mapped space of insight, trade-off and tool categories, the next

chapter will link these by analyzing each tool category for the insight and tradeoff. We

start at the edge of the system with hardware measurement tools and progress from

hardware to software-based tools. This is not based on a scientific method or

evaluation, but rather on developer experience which risks sacrificing measurable truth

for usefulness.

Hardware Instruments

Oscilloscopes and logic analyzers from Tektronix, Keysight, and Rohde & Schwarz offer

unmatched signal-level precision. These devices are the gold standard for verifying

input/output (I/O) timing and decoding hardware protocols. However, they are

ineffective beyond the system boundary. They cannot be used to understand execution

flow; they can only be used to understand the signals that reach the pins, which can

provide indirect insight into state and events. This can be useful for exposed signals.

Apart from that, they are often too removed to provide behavioral insight.

Metric Score Justification

Event Flow +2 These tools are best-in-class for signal-level timing accuracy. You get exact edge

timing, pulse width, jitter, and delays with nanosecond resolution.

Execution

Flow

–2 They can't access or interpret software logic, branching, or task switching. You only

infer behavior indirectly from physical I/O.

State Flow –2 They provide no access to internal variables or memory. Unless variables are

exposed through pins, you're blind to them.

Intrusion +2 Totally non-intrusive. They observe signals passively without touching system

execution.

Setup

Effort

0 Moderate. Requires physical wiring and knowledge of signal mapping for signals.

If state variables are supposed to be exposed this has to be set up.

Depth -1 Offers high timing insight at system boundaries but lacks visibility into internal

behavior. The insight depth is low.

https://essaar.de/en

Page 13 https://essaar.de/en

Hardware Tracing Tools

Tracing tools such as SEGGER J-Trace and Lauterbach TRACE32 use on-chip tracing

architectures, like ARM CoreSight and Infineon MCDS, to capture execution paths at

the instruction level, task switches, and precise timing, all with minimal intrusion during

runtime. They are irreplaceable for diagnosing race conditions, validating execution

paths, and analyzing deeply embedded real-time systems. They offer the perfect deal

on the surface: fast, low-intrusion access to internal state, memory, and trace buffers.

However, in the real world, the right interface may be missing, disabled in production,

or limited by the silicon vendor. Trace bandwidth may collapse under high-frequency

execution. In-depth analysis of controller variables may require extensive post-

processing.

Metric Score Justification

Event Flow +2 These tools capture timestamped execution traces with cycle-level accuracy.

Perfect for identifying jitter, latency, race conditions.

Execution

Flow

+2 Full visibility into execution flow: function calls, context switches, and branching

even across interrupts and threads.

State Flow 0 Can capture variable changes if trace instrumentation is added, but this often

requires extensive post-processing. Not suited for high bandwidth streaming or live

tuning

Intrusion 1 Nearly zero runtime impact, but trace bandwidth can limit visibility during high

activity.

Setup

Effort

- 1 Setup is complex: you need the right silicon support, external probes, and trace

clocks/pins. Often painful to configure across toolchains.

Depth +2 These tools are integrated directly into the hardware, providing the deepest

possible insight into runtime behavior. They capture execution, timing, and system

state in exceptional detail.

https://essaar.de/en

Page 14 https://essaar.de/en

Software Tracing Tools

When it comes to tracing, tools such as SEGGER SystemView and Percepio Tracealyzer

provide more user-friendly solutions. They integrate with RTOS events and instrument

application code. They also stream execution traces via SWO or UART. These tools

provide insight into task scheduling, event timing, and flow behavior. They also have

lower setup costs and broader accessibility.

However, they also have limitations. Runtime overhead, limited data throughput, and

the need for manual instrumentation reduce precision. Although the required setup

effort is reduced, it shifts to software setup. These tools help track control flow but often

cannot display variable state changes quickly enough to debug unstable loops or

sensor anomalies.

Metric Score Justification

Event Flow +1 Provides reasonably accurate timestamps for RTOS events and user-instrumented

markers. Limited by interface bandwidth and timestamp resolution (e.g.

SWO/UART).

Execution

Flow

+1 Captures task switches, interrupt entry/exit, and application-level events. Good for

understanding RTOS behavior and logic sequencing.

State Flow 0 Can show variable changes if manually instrumented but not designed for fast or

continuous streaming. Adds code overhead, lacks tuning-grade feedback.

Intrusion 0 Moderate. Adds runtime overhead through instrumentation and streaming,

especially over UART/SWO. May affect some timing-sensitive systems.

Setup

Effort

0 Easier than hardware tracers. Mostly software integration with vendor libraries but

still requires careful tracepoint planning.

Depth +1 Offers high contextual clarity at the RTOS level, but limited resolution for very fast

or deeply nested code paths.

https://essaar.de/en

Page 15 https://essaar.de/en

HiL Platforms

Hardware-in-the-loop (HIL) systems, such as those offered by dSPACE and NI, simulate

the entire physical environment around the embedded system being tested. These

systems are essential for validating complex systems under realistic conditions. They

are also fundamental to certification workflows, especially in safety-critical domains.

These platforms have evolved into active observability environments that can capture

signal traces, bus communication, and plant behavior with synchronized precision.

With the right tools, engineers can inject faults, automate test scenarios, adjust

parameters, and monitor system variables in real time. However, HIL visibility primarily

focuses on external interactions and test responses rather than deep internal software

execution. Accessing internal behavior, such as function execution or low-level timing,

requires additional instrumentation and setup. Debug interfaces, calibration protocols

(e.g., XCP), and internal model hooks are used for this purpose. This often involves

time-consuming customization. Additionally, HiL systems are usually closed toolchains,

so flexibility is limited when dealing with edge cases, such as pulse width modulation

(PWM) details, asynchronous events, or custom triggers. HiL platforms excel at

showing how the system responds to a test scenario. However, understanding why the

system behaved in a certain way often requires deeper tracing or introspective tools,

especially when relying on standard configurations.

Metric Score Justification

Event Flow +1 Able to measure timing at the I/O, bus, and plant simulation levels. Supports

synchronized signal injection and capture. Not cycle-exact at the firmware level but

excellent for system-level timing validation.

Execution

Flow

0 Limited. While some internal software state can be observed through model

instrumentation or exposed interfaces (e.g. XCP), HiL is not built for tracing internal

execution logic like task switches or instruction flow.

State Flow +1 Good capabilities via integration with calibration protocols (XCP, CCP) or mapped

I/O variables. Good for test automation and system validation scenarios.

Intrusion +1 Low to moderate. HiL testing is typically non-intrusive at the signal level but

depends on how internal variables are exposed and instrumented.

Setup

Effort

-2 Very high. Requires plant models, hardware setup, simulation validation, and

integration with DUT.

Depth -1 Provides strong system-level correlation between inputs and outputs under real-

world conditions but lacks visibility into internal software behavior unless

specifically instrumented. Insight is broad but indirect in default configurations.

https://essaar.de/en

Page 16 https://essaar.de/en

XCP/CCP Calibration Tools

Tools like Vector CANape and ETAS INCA are excellent at their intended purpose: live

calibration and variable measurement via XCP or CCP. This is essential in automotive

ECUs. However, these tools have limited functionality, providing little insight into control

flow or real-time task interaction. Additionally, setup and infrastructure can be

cumbersome, rendering them less suitable for early-stage or non-automotive

development.

Metric Score Justification

Event Flow -1 Very limited. Not designed to capture precise timing, task durations, or execution

flow. Sampling intervals depend on bus bandwidth and configuration.

Execution

Flow

-2 None. These tools provide no view into function calls, logic flow, or scheduling

behavior.

State Flow +1 Excellent. Designed for high-precision, real-time variable access. Supports

calibration, logging, and measurement of mapped internal variables through

XCP/CCP.

Intrusion +1 Low. Works via dedicated measurement protocols (XCP/CCP), designed to be

minimally intrusive on the running system.

Setup

Effort

-1 Moderate to high. Requires proper integration into the build system (A2L files),

variable mapping, and configuration.

Depth +1 Offers high-resolution access to internal variable states in calibrated ECUs, making

it ideal for tuning and validation. However, it lacks visibility into control flow and

timing behavior, and insight is limited to predefined, scalar-accessible data.

https://essaar.de/en

Page 17 https://essaar.de/en

IDE Debuggers

For many engineers, the debugger integrated into their IDE, such as GDB, Keil, or

STM32CubeIDE, is their go-to tool. These debuggers are ideal for identifying specific

types of bugs, including stack overflows, memory corruption, and logic errors.

However, they are fundamentally intrusive. Breakpoints halt execution. Stepping

distorts timing. In real-time or concurrent systems, this approach often masks the bug

you're trying to expose. Breakpoints are useful, especially in the early stages of

development, but they can be misused in systems where timing is the problem.

Metric Score Justification

Event Flow -2 Very poor. Halting the system destroys timing context. Cannot observe real-time

execution or concurrency.

Execution

Flow

0 Moderate. Stepping through code gives insight into logic paths, but not under real-

time conditions. Limited to static exploration.

State Flow +1 Good for local variable inspection, stack content, and memory access. But not real-

time.

Intrusion -2 High. Requires halting or stepping the CPU. Distorts or breaks real-time behavior.

Setup

Effort

+2 Very low. Integrated in most IDEs, typically works out-of-the-box with minimal

configuration.

Depth +1 It offers deep symbolic access to all system internals, including registers, memory,

and variables, at any point in time. However, since insight is only available during

halted execution, there is a lack of continuity and context for observing real-world

runtime behavior.

https://essaar.de/en

Page 18 https://essaar.de/en

Custom Logging and Scripting

Printf logging, GPIO edge tagging, and CSV dumps with Python post-processing work

well in resource-constrained environments and for early prototyping. However, they do

not scale well for embedded development. Logs get out of sync. Timing becomes

distorted. Analysis becomes manual, slow, and error-prone. While these methods solve

immediate problems, they introduce hidden costs, such as tribal knowledge, fragility,

and an increased maintenance burden.

Metric Score Justification

Event

Flow

-1 Low. GPIO tagging can offer basic event timing, but UART/printf

distorts execution and lacks precision. Alignment issues common.

Execution

Flow

-1 Limited. Printfs or GPIO toggles can signal when a code block runs,

but offer no structured or high-resolution flow tracking.

State

Flow

0 Moderate. Can output variables manually; flexible, but labor-

intensive and not scalable.

Intrusion -1 Medium to high. Printfs and logging distort timing, consume CPU

cycles, and may interfere with behavior.

Setup

Effort

-2 High. Requires custom code, script maintenance, sync work, and

post-processing. Error-prone and manual.

Depth 0 Offers basic visibility through custom signals or logs, but lacks

structured, continuous, or scalable insight. Depth depends entirely

on manual effort and design-time foresight, making it fragile and

inconsistent.

https://essaar.de/en

Page 19 https://essaar.de/en

Variable Watch Tools

In response to the need for real-time tuning, many silicon vendors now offer variable

watch tools, such as STM32CubeMonitor, MicroInspector from Infineon, and Real-Time

Chart from Renesas. These tools connect via debug interfaces to extract scalar variable

values in near real time. They’re ideal for parameter tuning and early validation.

However, they are limited to pre-selected variables, are often vendor-locked, and are

constrained by bandwidth. Additionally, they don't capture timing, task context, or

control flow.

Metric Score Justification

Event

Flow
-1

Minimal. No access to execution timing, scheduling, or delays. Not

suitable for debugging timing-sensitive behavior.

Execution

Flow
-1

None. Offers no awareness of task switches, execution paths, or

logic flow.

State

Flow
+1

High for selected variables. Fast feedback, continuous updates of

scalar variables. Limited to pre-defined, low-bandwidth channels.

Intrusion
0

Low to moderate. Generally safe for runtime use, but performance

impact depends on polling frequency and interface.

Setup

Effort
+1

Low. Provided by chip vendors, integration is usually simple and

well-documented.

Depth
+1

Focused. Excellent for parameter tuning and watching control

signals, but blind to system behavior outside selected variables.

https://essaar.de/en

Page 20 https://essaar.de/en

es:scope platform

The ES:Scope platform is a software-based testing and measurement solution for

embedded systems. It includes lightweight C middleware for the target and a desktop

application that offers runtime visibility and interaction with internal variables via

standard interfaces, such as UART, USB, and Ethernet.

The platform enables virtual probing and live tuning without the need for external

hardware. Its strength lies in variable-level access and runtime interaction. Although it

is limited in control-flow insight, it offers a pragmatic, lightweight alternative for many

visibility and calibration tasks.

Metric Score Justification

Event Flow 0 Indirect. While not designed for timing trace or scheduling analysis, sampling rates

may be sufficient for timing correlation between signals depending on update rate

and signal behavior.

Execution

Flow

-1 Not the focus. No native function-level tracing or task execution tracking. Not

intended to replace ETM/SWV/RTOS-aware tools.

State Flow +2 Strong. High-speed streaming of scalar variable data with live interaction and

tuning. Virtual probes offer flexible low-intrusive access and interface-agnostic

offer flexible transmission.

Intrusion 0 Low. Instrumentation is lightweight and interface-agnostic; uses standard transport

layers. Does not block or halt execution. Impact depends on bandwidth

configuration and sampling strategy.

Setup

Effort

+1 Moderate to low. Requires integration of es:prot middleware into the target, but no

external probes or vendor-specific tooling needed. Desktop setup is

straightforward once middleware is running.

Depth +1 Provides strong, real-time visibility into internal variables with live tuning and virtual

probes.

https://essaar.de/en

Page 21 https://essaar.de/en

Key Takeaways

Most teams have the tools they need to capture certain aspects of system behavior.

However, very few tools offer insight across boundaries, such as those between timing

and logic, function flow and variable state, and system behavior and internal causality.

Each category exists for a reason. However, none exist without tradeoffs. What matters

isn't just what a tool does, but also how it does it and the cost in terms of procurement,

setup, and usage. Moreover, the real cost isn’t just effort; it’s the delay in understanding

and time to insight.

When debugging needs to happen in real time across layers and often in the field, that

cost becomes a bottleneck. Effort becomes unpredictable, and getting stuck in

adjustment iterations becomes the norm. That’s why understanding this landscape

matters. It's not about replacing tools that work, but rather knowing where they work,

where they don't, and what's missing in between. The following table summarizes this

landscape.

Insight Tradeoff

Category Timing Insight

Control Flow

Insight

Variable State

Insight Intrusion

Setup and

usage effort Depth

Hardware

Instruments
2 -2 -2 2 0 -1

Software

Tracers
1 1 0 0 0 1

Hardware

Tracers
2 2 0 1 -2 2

HiL Platforms 1 0 1 1 -2 -1

Calibration

Protocols
-1 -1 1 1 -1 1

IDE-Debuggers -2 0 1 -2 2 1

Variable Watch

Tools
-1 -1 1 0 1 1

es:scope® 0 -1 2 0 1 1

Custom Logging -1 -1 0 -1 -2 0

https://essaar.de/en

Page 22 https://essaar.de/en

Part 4: Summary

When selecting a tool for observing embedded system behavior, the challenge is rarely

technical capability alone. Instead, it’s about finding the right fit—given constraints,

requirements, and trade-offs. The following three-step process can help guide effective

tool selection:

1. Context

Start by understanding your unique situation:

• What do you need to observe? Timing, logic, state?

• What are you allowed to observe? Consider compliance, security, or legal

limitations.

• What must you prove? Auditable traceability, functional safety, or runtime

correctness?

• What tools are available to you? Account for your budget, platform support, and

existing infrastructure.

2. Insight

Identify the kind of insight your task requires:

• Timing Insight: Do you need to know when things happen, with meaningful time

resolution?

• Control Flow Insight: Do you need to trace what code runs and in what order?

• Variable State Insight: Do you need to observe how internal data changes at

runtime?

3. Tradeoff

Every tool comes with compromises. Evaluate them:

• Intrusion: Will the tool alter system behavior or add significant runtime overhead?

• Effort: How much setup, integration, and iteration does the tool require?

• Insight Depth: Will the insight be direct and detailed or limited to indirect, proxy-

level observations?

Ultimately, choosing the right tool is a strategic decision, not just a technical one. The

more your needs align with the tool's capabilities, the faster and more confidently you

can bridge the gap between design and behavior. In embedded systems, insight

defines what is observable. Only what is observable can be controlled.

https://essaar.de/en

Page 23 https://essaar.de/en

Disclaimer

As of this writing, I, Joshua Summa, am the CEO of es:saar, the company behind the

es:scope platform discussed in this article. While every effort has been made to present

an objective and balanced view of embedded tooling, it is important to disclose this

affiliation explicitly. The evaluations and comparisons in this document reflect practical

experience and technical analysis, but readers should be aware of this potential source

of bias.

Text © 2025, es:saar GmbH

contact@essaar.de

Phone: +49 17681456107

E-mail: joshua.summa@essaar.de

Web: https://essaar.de

Campus A 1.1, Starterzentrum 1

D-66123 Saarbrücken

Sitz der Gesellschaft: Saarbrücken

Registergericht: Amtsgericht Saarbrücken, HRB 108623

Geschäftsführer: Joshua Summa

https://essaar.de/en
mailto:contact@essaar.de
mailto:joshua.summa@essaar.de
https://essaar.de/

