
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: 

As embedded systems have grown more complex, so has the need to understand how 

they behave in the real world. Fortunately, available tools have kept up with this demand, 

and they continue to improve. However, as these tools have matured, the core issue 

has shifted from limited insight to fragmented approaches to gain it.  Over time, several 

tool families have emerged to address specific analysis problems within particular 

market segments under specific constraints. There is no single scenario that defines 

embedded development. Accordingly, no single tool can cover all scenarios. Each 

segment now relies on familiar toolchains, which strengthens fragmentation. 

The best way to select the most appropriate tool from the available options is to start 

with the specific context of the situation. Context always matters more than raw power. 

Next, find tools that align with the necessary insights and associated trade-offs. 

Ultimately, it's not just about tool capability. It's about fit. This guide is designed to help 

readers find the right fit. 
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The Appropriate Tool for Behavioral Insight 

Selecting the Right Introspection Tool to Debug the Runtime 

Behavior of an Embedded System 

All engineering teams working in the field of embedded systems face the same 

challenge. At some point, they must reconcile design intent with real-world behavior. 

Whether they are bound by automotive compliance, able to move quickly without these 

constraints, or need to calibrate a sensor or tune a sophisticated controller, their 

approach remains essentially the same. They must observe, validate, and adjust 

runtime system behavior. 

However, "system behavior" is a broad term, so it's important to consider what it actually 

means. As engineers, what are we attempting to observe? 

Sometimes, it's about observing a system’s health. Is the system stable and 

responsive? Does it remain within acceptable limits? Other times, we're interested in 

execution and event flow. Which functions ran, when, and in what order? Sometimes, 

it comes down to state changes in variable values. The problem is that no single tool 

can provide insight into all these areas without significant trade-offs. Most tools excel 

in one area but compromise in others. 

This leads us to the topic of this article. We will explore the types of insights and trade-

offs that developers of embedded systems face when selecting tools to interface with 

their runtime behavior. Before delving into these categories, however, it is important to 

understand the context in which these tools were developed. We will briefly review their 

history and the reasons for their significant differences across industries. In summary, 

this article aims to answer a single question:  

How should one choose the right tool to interface with the runtime behavior of an 

embedded system? 
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Part 1: Tool Evolution and Segment Realities 

1.1 Evolution of Introspection Tools 

Before 1990: The Early Days of Inaccessibility 

In the early days of embedded systems, the 8- and 16-bit microcontrollers of the 70s 

and 80s developers faced extreme constraints: no runtime hooks, no memory to spare, 

and no structured visibility. Debugging meant toggling LEDs or sending out serial logs. 

Oscilloscopes could validate pin-level timing but gave no insight into what software was 

doing. EPROM-based workflows made iteration painfully slow, and in-circuit emulators 

(ICEs), though powerful relative to other tools of the time, were expensive and 

inaccessible to many. 

1990s: Internal Introspection 

The shift from EPROMs to flash memory significantly shortened iteration cycles. In the 

mid-1990s, the use of ICEs changed with the adoption of on-chip debugging via 

interfaces such as JTAG. These interfaces provided direct access to the processor's 

state, eliminating the need for specialized emulation hardware. This lowered costs and 

reduced setup complexity. Although integration remained fragmented, debugging 

became more accessible, supported by an increasing number of vendor tools and early 

integrated development environments (IDEs). This marked the start of insights into the 

internal behavior of an embedded system. At the same time, tools for embedded 

systems were tailored to segment-specific requirements. Hardware-in-the-loop (HiL) 

systems began to be adopted, and the CAN calibration protocol (CCP) was introduced 

by ASAM in 1994. For the first time, developers could measure and calibrate ECU 

parameters during execution. 

2000s: The Emergence of Tracing 

From 2000 to 2010, embedded systems evolved from basic task-switching software 

into real-time capable platforms. The widespread adoption of real-time operating 

systems (RTOS) created new demands for debugging. Engineers needed time-

correlated insight into task switches, interrupts, and variable behavior, something that 

traditional breakpoint-based debugging could not provide. In response, tool and silicon 

vendors developed new solutions. For example, ARM introduced Serial Wire Debug 

(SWD) as an improvement over JTAG and its CoreSight infrastructure with the Cortex-

M3. This enabled engineers to use instruction tracing features, such as the Embedded 

Trace Macrocell and the Instrumentation Trace Macrocell, as well as data streaming via 

the Serial Wire Viewer (SWV). Meanwhile, other vendors, including Infineon, NXP 

(formerly Philips), and Renesas, promoted their own debugging and tracing strategies. 

Tool vendors such as Lauterbach, PE Micro, and IAR Systems integrated these 
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architectures to provide tracing and live introspection, though capabilities varied 

depending on the silicon. For example: SEGGER's J-Link, introduced in the early 2000s, 

expanded SWV support by 2008. This enabled trace capabilities on Cortex-M devices 

for a broader market. 

2010s: From Tooling Constraints to Fragmentation 

From 2010 to 2020, the demand for real-time performance increased, and multicore 

processors became standard even in mid-tier embedded applications. This pushed 

silicon and tool vendors further. ARM’s CoreSight introduced the Trace Memory 

Controller (TMC) and the Embedded Trace Router (ETR), which enabled trace 

collection and streaming through high-bandwidth interfaces. Tools such as the 

SEGGER J-Trace Pro made live ETM streaming possible, enabling developers to collect 

instruction-level trace data in real time on the host machine. Outside of ARM, Infineon’s 

MCDS + AGBT, Renesas's advanced debug interface, and NXP’s Nexus trace offered 

comparable capabilities and increasingly specialized in automotive, industrial, and 

safety-oriented applications. 

While this symbiosis between silicon and tool vendors developed further, a novel 

approach matured during this time: software tracing platforms. These platforms 

became a viable alternative for many applications. Tools such as Percepio's Tracealyzer 

offer visual timelines, interruption heat maps, CPU load graphs, and state transition 

models. With these tools, developers could observe their systems' behavior for race 

conditions and measure jitter, preemption patterns, or latency bottlenecks. 

After 2010: The Shift to Custom Toolchains  

By the end of the 2010s, the landscape of embedded tools had fractured. There was a 

tool for every use case, segment, and budget. However, it was rare for one tool to work 

across boundaries. The challenge was no longer tool availability. The challenge was 

stitching together insights across layers of timing, control flow, and variable state. 

Nevertheless, a complete toolchain exists. In regulated environments such as 

automotive and aerospace, teams sometimes build complete dynamic testing stacks 

by combining hardware-in-the-loop (HiL) platforms, trace tools, and calibration 

protocols such as XCP. These setups can deliver near-total observability of timing, 

control flow, and variable access. However, this level of visibility comes at a cost: 

dedicated infrastructure, custom integration, and maintenance that few teams outside 

of these regulated environments can afford. For everyone else, selecting the right tools 

for insight is a trade-off. This trend has only accelerated since 2020. Today's embedded 

systems are real-time, distributed, field-deployed, and often decoupled from traditional 

debugging infrastructure. The old problem was acquiring sufficient tools. The new 

problem is choosing the right tool.  
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Key Takeaways 

• Before 1990: Embedded debugging was constrained by hardware limitations. 

Engineers relied on indirect methods like LEDs and oscilloscopes. System 

internals were essentially invisible. 

• 1990 - 2000: On-chip debugging (via JTAG) and flash memory shortened 

iteration times and marked the start of internal system introspection. Tool 

support grew, and real-time calibration protocols emerged. 

• 2000-2010: The rise of RTOS-driven systems created demand for time-

correlated debugging. Trace infrastructure (e.g., SWD, SWV, ETM) enabled real-

time visibility. Tools integrated these features to varying degrees. 

• After 2010: The challenge shifted from tool availability to tool selection and 

integration. Highly specialized toolchains enable full observability in regulated 

industries, but most teams must balance cost, complexity, and insight. 
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1.2 Segments Realities for Introspection Tools 

Not all engineering teams face the same constraints, risks, or realities.  Having looked 

at how embedded debugging has evolved over time, the next step is to understand how 

it varies across different market segments. Depending on the industry, debugging and 

tuning embedded systems can mean vastly different things. At one end of the spectrum 

are the “four horsemen of compliance” in electronics: Automotive, Medical, Aerospace, 

and Military. At the other end of the spectrum are consumer and industrial embedded 

systems, as well as R&D endeavors. 

Tools in Compliance Constrained Segments 

In the automotive industry, the ISO 26262 standard influences nearly every decision, 

from the use of XCP-based calibration tools such as CANape to the integration of ECUs 

into full-scale hardware-in-the-loop environments from companies like dSPACE and 

National Instruments (NI). The cost is enormous, but so are the safety requirements. 

The result is a rigid, high-assurance pipeline with certified validation platforms. 

Automotive debugging is shaped not by what’s technically possible, but by what’s 

certifiable and required. In aerospace, this concept is taken even further. It's not just 

about whether a debugger can provide insight to tune a controller, but also whether it 

can perform consistently under audit. This leaves little room for dynamic, exploratory 

debugging. Medical devices face similar constraints, albeit with a different flavor. 

Regulatory bodies require compliance and design traceability from requirements to test 

results. Debug ports are usually locked down during production or field testing. Logging 

is then non-intrusive, scrubbed of patient data, and subject to audit. The barrier to 

insight here is legal, not technical. Engineers may want full runtime visibility, but unless 

it's validated, encrypted, and documented, it's out of the question.   In military 

applications, all compliance demands converge, including extreme performance 

requirements, strict safety and mission-critical reliability standards, and 

uncompromising information security measures. Tooling must support highly 

deterministic systems under real-time constraints, often on ruggedized or custom 

hardware, while meeting stringent assurance standards such as DO-178 for defense 

aviation and MIL-STD guidelines. Debugging and introspection tools must be examined 

for telemetry risks and operated within tightly controlled, often classified, environments. 
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Tools in Less Constrained Segments 

At the same time, there are hardly any formal restrictions on tools for consumer and 

industrial embedded systems, unlike the other segments we discussed. The main 

requirements are cost-effectiveness and speed, including fast feedback, iteration, and 

shipping. If a tool is inexpensive and gets the job done, it's preferred. However, that 

freedom comes with a risk: a lack of structure and predictability. Debugging can be 

quick when it works but it can also become a critical bottleneck when it doesn't. Without 

fitting tools or a clear process, teams often get stuck in test-iterate-postprocess loops 

that don’t scale for complex projects. 

Tools in Unconstrained Segments 

Finally, we come to the opposite end of the compliance spectrum: university and 

corporate R&D. Here, debugging is not about compliance constraints but about 

possibility. There are essentially no regulations to adhere to, only prototypes to develop 

and insights to pursue. Depending on their budget and focus, teams might set up a 

complete dSPACE setup or put together a Python trace pipeline. Sometimes, they don't 

adopt existing tools, but rather invent the ones that the rest of the industry will use five 

years later. This is also the space from which es:saar came. Our tool, es:scope was 

developed on test benches, in labs, and under pressure to determine why a system 

was misbehaving. 

Key Takeaways 

• Compliance-constrained segments prioritize certification over flexibility. 

In sectors like automotive, aerospace, medical, and military, tools must support 

traceability, repeatability, and auditability. Introspection can be  limited by legal, 

regulatory, or security requirements, not technical feasibility. 

• Less constrained segments value speed and pragmatism: In consumer and 

industrial systems, the focus is on fast iteration and low cost. Engineers often 

rely on lightweight tools, but this can introduce fragility and scaling issues as 

systems mature and become more complex. 

• Unconstrained environments foster experimentation and invention: In R&D 

and academic contexts, the absence of compliance requirements allows teams 

to build or adapt tools freely in pursuit of insightfully driving innovation across 

the broader industry. 

• There is no “best” tool, only the right one for your constraints: Effective 

debugging is about aligning the tool’s capabilities with what you need to observe, 

what you're allowed to observe, and what you must prove. That balance is 

different in every segment. 
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1.3 From Context to Selection 

Toolchain Fragmentation Over Industry Segments 

This brief overview has demonstrated that, over time, tools have been developed to 

address specific problems within particular market segments under specific 

constraints. Consequently, no single tool can cover all scenarios because no single 

scenario defines embedded development. As embedded systems have grown in 

complexity, so has the effort required to understand their real-world behavior. 

Fortunately, the tools have kept up, and they continue to do so. However, as the tools 

matured, the core issue shifted from limited insight to fragmented approaches to gain 

insight. Now, each segment relies on familiar toolchains, which strengthens 

diversification. 

Selecting the Most Appropriate Tool  

In theory, a lack of insight should not be due to inadequate tools nowadays, but rather 

to an inappropriate choice of tools. In practice, however, the lack of tools can 

exacerbate the problem. As we have seen, many embedded developers, particularly 

those working with industrial and consumer systems, must use whatever tools are at 

their disposal.  The best way to select the most appropriate tool among the available 

options is to start with individual constraints. Context always matters more than raw 

power. 

Navigating Between Insight and Trade-Off 

After understanding the individual context, the next step is to find tools that align with 

the necessary insights and associated trade-offs. In this article, we define three core 

trade-offs: intrusion, effort, and depth of insight. In the next chapter, we will examine 

the categories of available tools, the insights they offer, and how to evaluate them based 

on these trade-offs. Our goal is not to define the "best" tools but to develop a practical 

strategy for selecting the most appropriate ones given real-world constraints. 

Ultimately, it's not just about tool capability. It's about fit.  
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Part 2: The Tool Map 

This chapter outlines the types of insights that embedded tools provide and explains 

how to evaluate the relevant trade-offs. Most tools offer in-depth analysis of one aspect 

of system behavior, such as timing, status, control flow, or internal state. However, they 

rarely provide insights that extend beyond this focus without significant trade-offs. Each 

tool serves a purpose, but when misunderstood or misapplied, even the most powerful 

ones can create barriers or mislead developers about system behavior. 

Insight Categories 

In this text, we focus on insights into the runtime behavior of embedded systems. In the 

introduction, we asked what we wanted to observe in system behavior, since this is a 

broad term. Sometimes, behavioral insight is simply about the system's health: Is it 

functioning properly? Is the CPU load acceptable? Has memory usage spiked? Other 

times, we care about the execution flow, where we ask which functions are running, 

whether the control logic is executing in the right order, whether a branch was taken, 

and whether a task switch occurred. Then there is the event flow layer, which considers 

how long operations take, when events occur relative to each other, and whether the 

real-time behavior still meets system constraints. Finally, we may be interested in the 

state flow of variables over time: How does a pulse width modulation (PWM) impact the 

current ripple? Does a sensor signal have creepage? Is an internal flag toggling at the 

right time? These questions divide behavioral insights into four layers. 

1. System Health 

Broad operating metrics like CPU load, free heap, error counters to observe 

performance degradation, memory leaks, long-term uptime issues. Typical tools 

are monitoring agents, dashboards, diagnostic logs. These will be excluded from 

further discussion as this is usually only an aggregate of the other system 

behavior insights. 

2. Execution Flow (Logical Behavior) 

Observe which functions run in which order to understand logic flow, tracking 

regressions, uncovering concurrency issues. 

3. Event Flow (Timing Behavior) 

Observe the duration, and overlap, task timing, ISR jitter, preemption patterns to 

detect race conditions, missed deadlines and responsiveness breakdowns.  

4. State Tracking (Variable Behavior) 

Focuses on internal data during runtime to control parameters, flags, counters, 

etc. and to support tuning, loop debugging, and real-world validation. 
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Trade-Off Categories 

Engineers sometimes overvalue tool familiarity and undervalue trade-offs. However, 

understanding tradeoffs and hidden costs is just as important as understanding 

technical capabilities. To illustrate the trade-offs, consider tools such as hardware 

tracers, which provide precise, non-intrusive insights. However, they require significant 

setup effort and expertise. Conversely, low-effort options, such as variable watchers or 

printf logging, are easy to integrate but typically offer shallow insight, missing timing 

issues, masking concurrency problems, and distorting control flow.  

The three key trade-off categories are intrusion, effort and insight depth: 

1. Intrusion: Impact and change on system behavior. 

2. Effort: Time spent setting up and maintaining tools, switching contexts, and 

iterating the process. 

3. Depth: The extent to which a tool reveals the behavior of a system through the 

specific insights it provides. 

Insight depth is a qualitative measure used here to evaluate how effectively a tool 

reveals system behavior through the insights it provides. High depth offers broad, direct 

visibility into internal behavior, whereas low depth results in narrow, indirect, or proxy-

based views. For example, logic analyzers deliver high timing accuracy at system 

boundaries, but they provide limited insight into internal software behavior. 
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The Tool Categories 

Category Examples Strengths Best For Limitations Not Ideal For 

Hardware 

Instruments 

Oscilloscopes, Logic 

Analyzers 

High signal 

accuracy, accurate 

voltage and timing at 

pin-level 

Debugging 

electrical 

interfaces (SPI, 

I²C, UART) 

No access to 

software 

internals; physical 

probing required 

Debugging logic 

flow or software 

variables 

Hardware 

Tracers 

SEGGER J-Trace, 

Lauterbach TRACE32 

Precise, non-

intrusive execution 

tracing; nanosecond 

timing 

Deep control-

flow and timing 

analysis 

Expensive; 

requires silicon 

support and 

dedicated probes 

Low-cost projects; 

dynamic tuning of 

variables 

Software 

Tracers 

SEGGER SystemView, 

Percepio Tracealyzer 

RTOS-level task 

tracing; event 

sequencing; visual 

timeline views 

Scheduling 

issues, 

preemption 

bugs 

Limited variable 

inspection; adds 

overhead; 

interface 

bandwidth 

constrained 

High-speed signal 

analysis or multi-

variable 

debugging 

HiL Platforms dSPACE, NI VeriStand Full system 

simulation and 

validation with 

environment models 

and I/O 

Certification 

workflows, 

integration 

testing 

High cost, long 

setup, limited 

internal visibility 

without extra 

tooling 

Quick iteration, 

low-level software 

insight 

Calibration 

Protocols 

Vector CANape, ETAS 

INCA (XCP/CCP) 

Real-time calibration 

in automotive ECUs; 

works with industry 

standards 

Standard ECU 

parameter 

tuning 

Complex setup; 

limited speed and 

flexibility; 

intrusive in some 

configurations 

Bare-metal 

systems, dynamic 

observability 

IDE 

Debuggers 

STM32CubeIDE, Keil 

uVision, GDB 

Step-through 

execution, 

breakpoint logic, 

memory inspection 

Start-up 

debugging, 

logic validation 

Halts execution; 

breaks real-time 

behavior; 

intrusive 

Debugging race 

conditions or 

timing bugs 

Variable 

Watch Tools 

STM32CubeMonitor, 

Infineon MicroInspector 

Live view of scalar 

variables; fast setup; 

no external 

hardware needed 

Parameter 

tuning, basic 

diagnostics 

Limited signal 

types; vendor-

locked; low 

bandwidth for 

fast-changing 

data 

Complex data 

correlation, high-

speed feedback 

loops 

Custom 

Logging 

UART prints, GPIO pulse 

tagging, CSV + Python 

Universally 

accessible, 

hardware-agnostic, 

low cost 

Early bring-up, 

prototype 

insight 

Manual sync; 

lacks structure; 

hard to maintain; 

not scalable 

Timing-critical 

systems or 

structured debug 

workflows 

es:scope® 

Platform 

es:scope, es:prot 

(middleware) 

Real-time variable 

introspection; 

scope-like views; 

interface-agnostic 

Control tuning, 

signal 

dynamics, 

feedback loops 

Needs firmware 

integration; not a 

task tracer; not for 

historical stack 

analysis 

RTOS flow 

tracing, post-

mortem failure 

reconstruction 
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Part 3: The Categories in Detail 

Now that we have mapped space of insight, trade-off and tool categories, the next 

chapter will link these by analyzing each tool category for the insight and tradeoff. We 

start at the edge of the system with hardware measurement tools and progress from 

hardware to software-based tools. This is not based on a scientific method or 

evaluation, but rather on developer experience which risks sacrificing measurable truth 

for usefulness. 

Hardware Instruments 

Oscilloscopes and logic analyzers from Tektronix, Keysight, and Rohde & Schwarz offer 

unmatched signal-level precision. These devices are the gold standard for verifying 

input/output (I/O) timing and decoding hardware protocols. However, they are 

ineffective beyond the system boundary. They cannot be used to understand execution 

flow; they can only be used to understand the signals that reach the pins, which can 

provide indirect insight into state and events. This can be useful for exposed signals. 

Apart from that, they are often too removed to provide behavioral insight. 

 

Metric Score Justification 

Event Flow +2 These tools are best-in-class for signal-level timing accuracy. You get exact edge 

timing, pulse width, jitter, and delays with nanosecond resolution. 

Execution 

Flow 

–2 They can't access or interpret software logic, branching, or task switching. You only 

infer behavior indirectly from physical I/O. 

State Flow –2 They provide no access to internal variables or memory. Unless variables are 

exposed through pins, you're blind to them. 

Intrusion +2 Totally non-intrusive. They observe signals passively without touching system 

execution. 

Setup 

Effort 

0 Moderate. Requires physical wiring and knowledge of signal mapping for signals. 

If state variables are supposed to be exposed this has to be set up. 

Depth -1 Offers high timing insight at system boundaries but lacks visibility into internal 

behavior. The insight depth is low. 
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Hardware Tracing Tools 

Tracing tools such as SEGGER J-Trace and Lauterbach TRACE32 use on-chip tracing 

architectures, like ARM CoreSight and Infineon MCDS, to capture execution paths at 

the instruction level, task switches, and precise timing, all with minimal intrusion during 

runtime. They are irreplaceable for diagnosing race conditions, validating execution 

paths, and analyzing deeply embedded real-time systems. They offer the perfect deal 

on the surface: fast, low-intrusion access to internal state, memory, and trace buffers. 

However, in the real world, the right interface may be missing, disabled in production, 

or limited by the silicon vendor. Trace bandwidth may collapse under high-frequency 

execution. In-depth analysis of controller variables may require extensive post-

processing. 

 

Metric Score Justification 

Event Flow +2 These tools capture timestamped execution traces with cycle-level accuracy. 

Perfect for identifying jitter, latency, race conditions. 

Execution 

Flow 

+2 Full visibility into execution flow: function calls, context switches, and branching 

even across interrupts and threads. 

State Flow 0 Can capture variable changes if trace instrumentation is added, but this often 

requires extensive post-processing. Not suited for high bandwidth streaming or live 

tuning 

Intrusion 1 Nearly zero runtime impact, but trace bandwidth can limit visibility during high 

activity. 

Setup 

Effort 

- 1 Setup is complex: you need the right silicon support, external probes, and trace 

clocks/pins. Often painful to configure across toolchains. 

Depth +2 These tools are integrated directly into the hardware, providing the deepest 

possible insight into runtime behavior. They capture execution, timing, and system 

state in exceptional detail. 
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Software Tracing Tools 

When it comes to tracing, tools such as SEGGER SystemView and Percepio Tracealyzer 

provide more user-friendly solutions. They integrate with RTOS events and instrument 

application code. They also stream execution traces via SWO or UART. These tools 

provide insight into task scheduling, event timing, and flow behavior. They also have 

lower setup costs and broader accessibility.  

However, they also have limitations. Runtime overhead, limited data throughput, and 

the need for manual instrumentation reduce precision. Although the required setup 

effort is reduced, it shifts to software setup. These tools help track control flow but often 

cannot display variable state changes quickly enough to debug unstable loops or 

sensor anomalies. 

 

Metric Score Justification 

Event Flow +1 Provides reasonably accurate timestamps for RTOS events and user-instrumented 

markers. Limited by interface bandwidth and timestamp resolution (e.g. 

SWO/UART). 

Execution 

Flow 

+1 Captures task switches, interrupt entry/exit, and application-level events. Good for 

understanding RTOS behavior and logic sequencing. 

State Flow 0 Can show variable changes if manually instrumented but not designed for fast or 

continuous streaming. Adds code overhead, lacks tuning-grade feedback. 

Intrusion 0 Moderate. Adds runtime overhead through instrumentation and streaming, 

especially over UART/SWO. May affect some timing-sensitive systems. 

Setup 

Effort 

0 Easier than hardware tracers. Mostly software integration with vendor libraries but 

still requires careful tracepoint planning. 

Depth +1 Offers high contextual clarity at the RTOS level, but limited resolution for very fast 

or deeply nested code paths. 
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HiL Platforms 

Hardware-in-the-loop (HIL) systems, such as those offered by dSPACE and NI, simulate 

the entire physical environment around the embedded system being tested. These 

systems are essential for validating complex systems under realistic conditions. They 

are also fundamental to certification workflows, especially in safety-critical domains.  

These platforms have evolved into active observability environments that can capture 

signal traces, bus communication, and plant behavior with synchronized precision.  

With the right tools, engineers can inject faults, automate test scenarios, adjust 

parameters, and monitor system variables in real time. However, HIL visibility primarily 

focuses on external interactions and test responses rather than deep internal software 

execution. Accessing internal behavior, such as function execution or low-level timing, 

requires additional instrumentation and setup. Debug interfaces, calibration protocols 

(e.g., XCP), and internal model hooks are used for this purpose. This often involves 

time-consuming customization. Additionally, HiL systems are usually closed toolchains, 

so flexibility is limited when dealing with edge cases, such as pulse width modulation 

(PWM) details, asynchronous events, or custom triggers. HiL platforms excel at 

showing how the system responds to a test scenario. However, understanding why the 

system behaved in a certain way often requires deeper tracing or introspective tools, 

especially when relying on standard configurations. 

 

Metric Score Justification 

Event Flow +1 Able to measure timing at the I/O, bus, and plant simulation levels. Supports 

synchronized signal injection and capture. Not cycle-exact at the firmware level but 

excellent for system-level timing validation. 

Execution 

Flow 

0 Limited. While some internal software state can be observed through model 

instrumentation or exposed interfaces (e.g. XCP), HiL is not built for tracing internal 

execution logic like task switches or instruction flow. 

State Flow +1 Good capabilities via integration with calibration protocols (XCP, CCP) or mapped 

I/O variables. Good for test automation and system validation scenarios. 

Intrusion +1 Low to moderate. HiL testing is typically non-intrusive at the signal level but 

depends on how internal variables are exposed and instrumented. 

Setup 

Effort 

-2 Very high. Requires plant models, hardware setup, simulation validation, and 

integration with DUT. 

Depth -1 Provides strong system-level correlation between inputs and outputs under real-

world conditions but lacks visibility into internal software behavior unless 

specifically instrumented. Insight is broad but indirect in default configurations. 
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XCP/CCP Calibration Tools 

Tools like Vector CANape and ETAS INCA are excellent at their intended purpose: live 

calibration and variable measurement via XCP or CCP. This is essential in automotive 

ECUs. However, these tools have limited functionality, providing little insight into control 

flow or real-time task interaction. Additionally, setup and infrastructure can be 

cumbersome, rendering them less suitable for early-stage or non-automotive 

development. 

 

Metric Score Justification 

Event Flow -1 Very limited. Not designed to capture precise timing, task durations, or execution 

flow. Sampling intervals depend on bus bandwidth and configuration. 

Execution 

Flow 

-2 None. These tools provide no view into function calls, logic flow, or scheduling 

behavior. 

State Flow +1 Excellent. Designed for high-precision, real-time variable access. Supports 

calibration, logging, and measurement of mapped internal variables through 

XCP/CCP. 

Intrusion +1 Low. Works via dedicated measurement protocols (XCP/CCP), designed to be 

minimally intrusive on the running system. 

Setup 

Effort 

-1 Moderate to high. Requires proper integration into the build system (A2L files), 

variable mapping, and configuration. 

Depth +1 Offers high-resolution access to internal variable states in calibrated ECUs, making 

it ideal for tuning and validation. However, it lacks visibility into control flow and 

timing behavior, and insight is limited to predefined, scalar-accessible data. 
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IDE Debuggers 

For many engineers, the debugger integrated into their IDE, such as GDB, Keil, or 

STM32CubeIDE, is their go-to tool. These debuggers are ideal for identifying specific 

types of bugs, including stack overflows, memory corruption, and logic errors. 

However, they are fundamentally intrusive. Breakpoints halt execution. Stepping 

distorts timing. In real-time or concurrent systems, this approach often masks the bug 

you're trying to expose. Breakpoints are useful, especially in the early stages of 

development, but they can be misused in systems where timing is the problem. 

 

Metric Score Justification 

Event Flow -2 Very poor. Halting the system destroys timing context. Cannot observe real-time 

execution or concurrency. 

Execution 

Flow 

0 Moderate. Stepping through code gives insight into logic paths, but not under real-

time conditions. Limited to static exploration. 

State Flow +1 Good for local variable inspection, stack content, and memory access. But not real-

time. 

Intrusion -2 High. Requires halting or stepping the CPU. Distorts or breaks real-time behavior. 

Setup 

Effort 

+2 Very low. Integrated in most IDEs, typically works out-of-the-box with minimal 

configuration. 

Depth +1 It offers deep symbolic access to all system internals, including registers, memory, 

and variables, at any point in time. However, since insight is only available during 

halted execution, there is a lack of continuity and context for observing real-world 

runtime behavior. 
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Custom Logging and Scripting 

Printf logging, GPIO edge tagging, and CSV dumps with Python post-processing work 

well in resource-constrained environments and for early prototyping. However, they do 

not scale well for embedded development. Logs get out of sync. Timing becomes 

distorted. Analysis becomes manual, slow, and error-prone. While these methods solve 

immediate problems, they introduce hidden costs, such as tribal knowledge, fragility, 

and an increased maintenance burden. 

 

Metric Score Justification 

Event 

Flow 

-1 Low. GPIO tagging can offer basic event timing, but UART/printf 

distorts execution and lacks precision. Alignment issues common. 

Execution 

Flow 

-1 Limited. Printfs or GPIO toggles can signal when a code block runs, 

but offer no structured or high-resolution flow tracking. 

State 

Flow 

0 Moderate. Can output variables manually; flexible, but labor-

intensive and not scalable. 

Intrusion -1 Medium to high. Printfs and logging distort timing, consume CPU 

cycles, and may interfere with behavior. 

Setup 

Effort 

-2 High. Requires custom code, script maintenance, sync work, and 

post-processing. Error-prone and manual. 

Depth 0 Offers basic visibility through custom signals or logs, but lacks 

structured, continuous, or scalable insight. Depth depends entirely 

on manual effort and design-time foresight, making it fragile and 

inconsistent. 
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Variable Watch Tools 

In response to the need for real-time tuning, many silicon vendors now offer variable 

watch tools, such as STM32CubeMonitor, MicroInspector from Infineon, and Real-Time 

Chart from Renesas. These tools connect via debug interfaces to extract scalar variable 

values in near real time. They’re ideal for parameter tuning and early validation. 

However, they are limited to pre-selected variables, are often vendor-locked, and are 

constrained by bandwidth. Additionally, they don't capture timing, task context, or 

control flow. 

 

Metric Score Justification 

Event 

Flow 
-1 

Minimal. No access to execution timing, scheduling, or delays. Not 

suitable for debugging timing-sensitive behavior. 

Execution 

Flow 
-1 

None. Offers no awareness of task switches, execution paths, or 

logic flow. 

State 

Flow 
+1 

High for selected variables. Fast feedback, continuous updates of 

scalar variables. Limited to pre-defined, low-bandwidth channels. 

Intrusion 
0 

Low to moderate. Generally safe for runtime use, but performance 

impact depends on polling frequency and interface. 

Setup 

Effort 
+1 

Low. Provided by chip vendors, integration is usually simple and 

well-documented. 

Depth 
+1 

Focused. Excellent for parameter tuning and watching control 

signals, but blind to system behavior outside selected variables. 
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es:scope platform 

The ES:Scope platform is a software-based testing and measurement solution for 

embedded systems. It includes lightweight C middleware for the target and a desktop 

application that offers runtime visibility and interaction with internal variables via 

standard interfaces, such as UART, USB, and Ethernet. 

The platform enables virtual probing and live tuning without the need for external 

hardware. Its strength lies in variable-level access and runtime interaction. Although it 

is limited in control-flow insight, it offers a pragmatic, lightweight alternative for many 

visibility and calibration tasks. 

 

Metric Score Justification 

Event Flow 0 Indirect. While not designed for timing trace or scheduling analysis, sampling rates 

may be sufficient for timing correlation between signals depending on update rate 

and signal behavior.  

Execution 

Flow 

-1 Not the focus. No native function-level tracing or task execution tracking. Not 

intended to replace ETM/SWV/RTOS-aware tools. 

State Flow +2 Strong. High-speed streaming of scalar variable data with live interaction and 

tuning. Virtual probes offer flexible low-intrusive access and interface-agnostic 

offer flexible transmission. 

Intrusion 0 Low. Instrumentation is lightweight and interface-agnostic; uses standard transport 

layers. Does not block or halt execution. Impact depends on bandwidth 

configuration and sampling strategy. 

Setup 

Effort 

+1 Moderate to low. Requires integration of es:prot middleware into the target, but no 

external probes or vendor-specific tooling needed. Desktop setup is 

straightforward once middleware is running. 

Depth +1 Provides strong, real-time visibility into internal variables with live tuning and virtual 

probes. 
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Key Takeaways 

Most teams have the tools they need to capture certain aspects of system behavior. 

However, very few tools offer insight across boundaries, such as those between timing 

and logic, function flow and variable state, and system behavior and internal causality. 

Each category exists for a reason. However, none exist without tradeoffs. What matters 

isn't just what a tool does, but also how it does it and the cost in terms of procurement, 

setup, and usage. Moreover, the real cost isn’t just effort; it’s the delay in understanding 

and time to insight. 

When debugging needs to happen in real time across layers and often in the field, that 

cost becomes a bottleneck. Effort becomes unpredictable, and getting stuck in 

adjustment iterations becomes the norm. That’s why understanding this landscape 

matters. It's not about replacing tools that work, but rather knowing where they work, 

where they don't, and what's missing in between. The following table summarizes this 

landscape. 

 

 
Insight Tradeoff 

Category Timing Insight 

Control Flow 

Insight 

Variable State 

Insight Intrusion 

Setup and 

usage effort Depth 

Hardware 

Instruments 
2 -2 -2 2 0 -1 

Software 

Tracers 
1 1 0 0 0 1 

Hardware 

Tracers 
2 2 0 1 -2 2 

HiL Platforms 1 0 1 1 -2 -1 

Calibration 

Protocols 
-1 -1 1 1 -1 1 

IDE-Debuggers -2 0 1 -2 2 1 

Variable Watch 

Tools 
-1 -1 1 0 1 1 

es:scope® 0 -1 2 0 1 1 

Custom Logging -1 -1 0 -1 -2 0 
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Part 4: Summary 

When selecting a tool for observing embedded system behavior, the challenge is rarely 

technical capability alone. Instead, it’s about finding the right fit—given constraints, 

requirements, and trade-offs. The following three-step process can help guide effective 

tool selection: 

 

1. Context 

Start by understanding your unique situation: 

• What do you need to observe? Timing, logic, state? 

• What are you allowed to observe? Consider compliance, security, or legal 

limitations. 

• What must you prove? Auditable traceability, functional safety, or runtime 

correctness? 

• What tools are available to you? Account for your budget, platform support, and 

existing infrastructure. 

 

 

2. Insight 

Identify the kind of insight your task requires: 

• Timing Insight: Do you need to know when things happen, with meaningful time 

resolution? 

• Control Flow Insight: Do you need to trace what code runs and in what order? 

• Variable State Insight: Do you need to observe how internal data changes at 

runtime? 

 

 

3. Tradeoff 

Every tool comes with compromises. Evaluate them: 

• Intrusion: Will the tool alter system behavior or add significant runtime overhead? 

• Effort: How much setup, integration, and iteration does the tool require? 

• Insight Depth: Will the insight be direct and detailed or limited to indirect, proxy-

level observations? 

Ultimately, choosing the right tool is a strategic decision, not just a technical one. The 

more your needs align with the tool's capabilities, the faster and more confidently you 

can bridge the gap between design and behavior. In embedded systems, insight 

defines what is observable. Only what is observable can be controlled. 

https://essaar.de/en


 

 

Page 23 https://essaar.de/en 

 

Disclaimer 

As of this writing, I, Joshua Summa, am the CEO of es:saar, the company behind the 

es:scope platform discussed in this article. While every effort has been made to present 

an objective and balanced view of embedded tooling, it is important to disclose this 

affiliation explicitly. The evaluations and comparisons in this document reflect practical 

experience and technical analysis, but readers should be aware of this potential source 

of bias. 
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